access icon free Optimised operation of power sources of a PV/battery/hydrogen-powered hybrid charging station for electric and fuel cell vehicles

This study presents a new energy management system (EMS) for the optimised operation of power sources of a hybrid charging station for electric vehicles and fuel cell vehicles. It is composed of a photovoltaic (PV) system, a battery and a hydrogen system as energy storage systems (ESSs), a grid connection, six fast charging units and a hydrogen supplier. The proposed EMS is designed to reduce the utilisation costs of the ESS and make them work, as much as possible, around their maximum efficiency points. The optimisation function depends on a cost prediction system that calculates the net present cost of the components from their previous performance and a fuzzy logic system designed for improving their efficiency. Finally, a particle swarm optimisation algorithm is used to solve the optimisation function and obtain the required power for each ESS. The proposed EMS is checked under Simulink environment for long-term simulations (25 years). By comparing the EMS with a simpler one that optimises only the costs, it is proved that the proposed EMS achieves better efficiency of the charging station (+7.35%) and a notable reduction in the loss of power supply probability (−57.32%) without compromising excessively its average utilisation cost (+1.81%).

Inspec keywords: hybrid power systems; energy storage; electric vehicles; optimisation; particle swarm optimisation; power grids; battery storage plants; distributed power generation; photovoltaic power systems; fuel cell vehicles; energy management systems; battery powered vehicles

Other keywords: time 25.0 year; rated power; optimisation function; cell vehicles; energy storage systems; maximum efficiency points; ESS; net present cost; hydrogen supplier; energy management system; power sources; utilisation costs; cost prediction system; local grid; photovoltaic system; EMS; electric vehicles; hydrogen system; fast charging units; particle swarm optimisation algorithm; average utilisation cost; power supply probability; fuzzy logic system; optimised operation; hybrid charging station; power 300.0 kW

Subjects: Distributed power generation; Other power stations and plants; Fuel cells; Solar power stations and photovoltaic power systems; Optimisation techniques; Optimisation techniques; Transportation

References

    1. 1)
      • 31. Chen, S.Y., Wu, C.H., Hung, Y.H., et al: ‘Optimal strategies of energy management integrated with transmission control for a hybrid electric vehicle using dynamic particle swarm optimization’, Energy, 2018, 160, pp. 154170.
    2. 2)
      • 1. ‘European Commission: The Strategic Energy Technology (SET)’. Available at https://setis.ec.europa.eu/sites/default/files/setis%20reports/2017_set_plan_progress_report_0.pdf, accessed June 2019.
    3. 3)
      • 30. Manbachi, M., Ordonez, M.: ‘AMI-based energy management for islanded ac/dc microgrids utilizing energy conservation and optimization’, IEEE Trans. Smart Grid, 2019, 10, (1), pp. 293304.
    4. 4)
      • 49. Xu, L., Li, J., Hua, J., et al: ‘Optimal vehicle control strategy of a fuel cell/battery hybrid city bus’, Int. J. Hydrogen Energy, 2019, 34, (17), pp. 73237333.
    5. 5)
      • 54. Langella, R., Testa, A., Ventre, C.: ‘A new model of lead-acid batteries lifetime in smart grid scenario’. Proc. IEEE Int. Energy Conf. (ENERGYCON 2014), Dubvronik, Croatia, May 2014, pp. 13431348.
    6. 6)
      • 34. Marzband, M., Yousefnejad, E., Sumper, A., et al: ‘Real time experimental implementation of optimum energy management system in standalone microgrid by using multi-layer ant colony optimization’, Int. J. Electr. Power Energy Syst., 2016, 75, pp. 265274.
    7. 7)
      • 20. Yan, Q., Zhang, B., Kezunovic, M.: ‘Optimized operational cost reduction for an EV charging station integrated with battery energy storage and PV generation’, IEEE Trans. Smart Grid, 2018, 10, (2), pp. 20962106.
    8. 8)
      • 43. Torreglosa, J.P., García, P., Fernández, L.M., et al: ‘Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system’, Renew. Energy, 2015, 74, pp. 326336.
    9. 9)
      • 39. Jahangir, M.H., Ali Mousavi, S., Vaziri Rad, M.A.: ‘A techno-economic comparison of a photovoltaic/thermal organic Rankine cycle with several renewable hybrid systems for a residential area in Rayen, Iran’, Energy. Convers. Manage., 2019, 195, pp. 244261.
    10. 10)
      • 52. Blum, C., Roli, A.: ‘Metaheuristics in combinatorial optimization: overview and conceptual comparison’, ACM Comput. Surv., 2003, 35, (3), pp. 268308.
    11. 11)
      • 23. Khawaja, Y., Allahham, A., Giaouris, D., et al: ‘An integrated framework for sizing and energy management of hybrid energy systems using finite automata’, Appl. Energy, 2019, 250, pp. 257272.
    12. 12)
      • 7. Robinius, M., Linssen, J., Grube, T., et al: ‘Comparative analysis of infrastructures: hydrogen fueling and electric charging of vehicles’, Energy Environ., 2018, 408, pp. 1108.
    13. 13)
      • 11. Chen, Q., Liu, N., Hu, C., et al: ‘Autonomous energy management strategy for solid-state transformer to integrate PV-assisted EV charging station participating in ancillary service’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 258269.
    14. 14)
      • 8. Gupta, V., Konda, S.R., Kumar, R., et al: ‘Multiaggregator collaborative electric vehicle charge scheduling under variable energy purchase and EV cancelation events’, IEEE Trans. Ind. Inf., 2018, 14, (7), pp. 28942902.
    15. 15)
      • 36. Mohseni, S., Moghaddas-Tafreshi, : ‘A multi-agent system for optimal sizing of a cooperative self-sustainable multi-carrier microgrid’, Sustain. Cities Soc., 2018, 38, pp. 452465.
    16. 16)
      • 6. ‘Hydrogen Council: ‘Hydrogen scaling-up’ 2017. Available at http://hydrogencouncil.com/wp-content/uploads/2017/11/Hydrogen-scaling-up-Hydrogen-Council.pdf, accessed June 2019.
    17. 17)
      • 33. Karavas, S., Kyriakarakos, G., Arvanitis, K.G., et al: ‘A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids’, Energy Convers. Manage., 2015, 103, pp. 166179.
    18. 18)
      • 41. Bahramara, S., Parsa Moghaddam, S., Haghifam, M.R.: ‘Optimal planning of hybrid renewable energy systems using HOMER: A review’, Renew. Sustain. Energy Rev., 2016, 62, pp. 609620.
    19. 19)
      • 3. Eriksson, E.L.V., Gray, E.M.A.: ‘Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – a critical review’, Appl. Energy, 2017, 202, pp. 348364.
    20. 20)
      • 42. Pasaoglu, G., Fiorello, D., Zani, L., et al: ‘Projections for electric vehicle load profiles in Europe based on travel survey data contact information’. JCR Scientific and policy reports, Milan Italy, Report EUR 25993, 2013.
    21. 21)
      • 12. Monteiro, V., Pinto, J.G., Afonso, J.L.: ‘Experimental validation of a three-port integrated topology to interface electric vehicles and renewables with the electrical grid’, IEEE Trans. Ind. Inf., 2018, 14, (6), pp. 23642374.
    22. 22)
      • 9. Rahmani-Andebili, M., Fotuhi-Firuzabad, M.: ‘An adaptive approach for PEVs charging management and reconfiguration of electrical distribution system penetrated by renewables’, IEEE Trans. Ind. Inf., 2018, 14, (5), pp. 20012010.
    23. 23)
      • 13. Van Der Meer, D., Ram Chandra Mouli, G., Morales-España, G., et al: ‘Energy management system with PV power forecast to optimally charge EVs at the workplace’, IEEE Trans. Ind. Inf., 2018, 14, (1), pp. 310320.
    24. 24)
      • 5. Gray, E.M., Webb, C.J., Andrews, J., et al: ‘Hydrogen storage for off-grid power supply’, Int. J. Hydrogen Energy, 2011, 36, (1), pp. 654663.
    25. 25)
      • 50. ‘Datasheet Placa Solar A-330M ATERSA ULTRA’. Available at https://atersa.shop/panel-solar-a-330m-ultra, accessed June 2019.
    26. 26)
      • 4. Sanjari, M.J., Karami, H., Gooi, H.B.: ‘Analytical rule-based approach to online optimal control of smart residential energy system’, IEEE Trans. Ind. Inf., 2017, 13, (4), pp. 15861597.
    27. 27)
      • 2. Nykvist, B., Nilsson, M.: ‘Rapidly falling costs of battery packs for electric vehicles’, Nat. Clim. Change, 2015, 5, pp. 329332.
    28. 28)
      • 16. Li, B., Roche, R., Miraoui, A.: ‘Microgrid sizing with combined evolutionary algorithm and MILP unit commitment’, Appl. Energy, 2017, 188, pp. 547562.
    29. 29)
      • 19. Gazafroudi, A.S., Corchado, J.M., Keane, A., et al: ‘Decentralised flexibility management for EVs’, IET Renew. Power. Gener., 2019, 13, (6), pp. 952960.
    30. 30)
      • 35. Marzband, M., Yousefnejad, E., Sumper, A., et al: ‘Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode’, Appl. Energy, 2014, 128, pp. 164174.
    31. 31)
      • 55. ‘The MathWorks, Inc. MATLAB Optimization Toolbox™ User's Guide’. Available at http://www.mathworks.com/help/pdf_doc/optim/optim_tb.pdf, accessed August 2019.
    32. 32)
      • 32. Mesbahi, T., Rizoug, N., Bartholomeüs, P., et al: ‘Optimal energy management for a Li-ion battery/supercapacitor hybrid energy storage system based on a particle swarm optimization incorporating Nelder–Mead simplex approach’, IEEE Trans. Intell. Veh., 2017, 2, (2), pp. 99110.
    33. 33)
      • 28. Hussain, S., Al-Hitmi, M., Khaliq, S., et al: ‘Implementation and comparison of particle swarm optimization and genetic algorithm techniques in combined economic emission dispatch of an independent power plant’, Energies, 2019, 12, p. 2037.
    34. 34)
      • 38. Electric Vehicle Conductive Charging System-Part 1: General Requirements, document IEC 61851-1:2010, 2016.
    35. 35)
      • 47. Garcia, P., Torreglosa, J.P., Fernandez, L.M., et al: ‘Control strategies for high-power electric vehicles powered by hydrogen fuel cell, battery and supercapacitor’, Expert Syst. Appl., 2013, 40, (12), pp. 47914804.
    36. 36)
      • 15. Wu, Y., Ravey, A., Chrenko, D., et al: ‘Demand side energy management of EV charging stations by approximate dynamic programming’, Energy Convers. Manag., 2019, 196, pp. 878890.
    37. 37)
      • 44. García, P., Torreglosa, J.P., Fernández, L.M., et al: ‘Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery’, J. Power Sources, 2014, 265, pp. 149159.
    38. 38)
      • 27. Abdmouleh, Z., Gastli, A., Ben-Brahim, L., et al: ‘Review of optimization techniques applied for the integration of distributed generation from renewable energy sources’, Renew. Energy, 2017, 113, pp. 266280.
    39. 39)
      • 26. Sedghi, M., Ahmadian, A., Aliakbar-Golkar, M.: ‘Assessment of optimization algorithms capability in distribution network planning: review, comparison and modification techniques’, Renew. Sustain. Energy Rev., 2016, 66, pp. 415434.
    40. 40)
      • 18. Tahir, M.F., Chen, H., Javed, M.S., et al: ‘Integration of different individual heating scenarios and energy storages into hybrid energy system model of China for 2030’, Energies, 2019, 12, (11), p. 2083.
    41. 41)
      • 29. Mohammeda, O.H., Amiratb, Y., Benbouzidc, M.: ‘Particle swarm optimization of a hybrid wind/tidal/PV/battery energy system. Application to a remote area in Bretagne, France’, Energy Procedia, 2019, 162, pp. 8796.
    42. 42)
      • 51. ‘HySTAT® hydrogen fueling stations’. Available at https://www.hydrogenics.com/wp-content/uploads/222-hydrogen-fueling.pdf, accessed June 2019.
    43. 43)
      • 45. Zhao, L., Brouwer, J., James, S., et al: ‘Servers powered by a 10 kW in-rack proton exchange membrane fuel cell system’. ASME 2014 12th Int. Conf. on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th Int. Conf. on Energy Sustainability, Boston, Massachusetts, USA, June–July 2014, p. V001T02A002.
    44. 44)
      • 53. Shi, Y., Eberhart, R.: ‘A modified particle swarm optimizer’. Proc. IEEE World Congress on Evolutionary Computation, Anchorage, Alaska, USA, May 1998, pp. 6973.
    45. 45)
      • 22. Bahmani-Firouzi, B., Azizipanah-Abarghooee, R.: ‘Optimal sizing of battery energy storage for micro-grid operation management using a new improved bat algorithm’, Int. J. Electr. Power Energy Syst., 2014, 56, pp. 4254.
    46. 46)
      • 14. Robledo, C.B., Oldenbroek, V., Abbruzzese, F., et al: ‘Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building’, Appl. Energy, 2018, 215, pp. 615629.
    47. 47)
      • 21. Zhao, B., Zhang, X., Li, P., et al: ‘Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island’, Appl. Energy, 2014, 113, pp. 16561666.
    48. 48)
      • 25. Tan, K.M., Ramachandaramurthy, V.K., Yong, J.Y.: ‘Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques’, Renew. Sustain. Energy Rev., 2016, 53, pp. 720732.
    49. 49)
      • 40. Rajbongshi, R., Borgohain, D., Mahapatra, S.: ‘Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER’, Energy, 2017, 126, pp. 461474.
    50. 50)
      • 37. Jing, W., Lai, C.H., Wong, S.H.W., et al: ‘Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: a review’, IET Renew. Power Gener., 2011, 11, (4), pp. 461469.
    51. 51)
      • 48. ‘HOPPECKE Batterien, Sun. Power VR L Series OPzV’. Available at https://us.hoppecke.com/fileadmin/Redakteur/Hoppecke-Main/Products/Downloads/sun_power_VRL_en.pdf, accessed June 2019.
    52. 52)
      • 46. ‘ProtonOnsite (2018). C Series’. Available at http://www.protononsite.com/sites/default/files/2017-07/PD-0600-0068-rev F.pdf, accessed June 2019.
    53. 53)
      • 17. Kaabeche, A., Bakelli, Y.: ‘Renewable hybrid system size optimization considering various electrochemical energy storage technologies’, Energy Convers. Manag., 2019, 193, pp. 162175.
    54. 54)
      • 24. Vipin Das, P., Karuppanan, V., Karthikeyan, S.R., et al: ‘Smart energy grid design for island countries – challenges and opportunities’ (Springer International Publishing Press, Cham, Switzerland, 2017).
    55. 55)
      • 10. Yang, J., Liu, J., Fang, Z., et al: ‘Electricity scheduling strategy for home energy management system with renewable energy and battery storage: a case study’, IET Renew. Power. Gener., 2017, 12, (6), pp. 639648.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0766
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0766
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading