Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Anticipatory AGC control strategy based on wind power variogram characteristic

Increasing penetration of wind power has a negative effect on system frequency deviation due to the fast variability and uncertainty characteristics of wind. In this study, a wind power variation prediction-based automatic generation control (AGC) feedforward control method is applied within the conventional AGC framework to minimise system frequency and tie-line deviations. Firstly, the variogram function is introduced for analysing the characteristics of wind power variations. A relationship between the variogram of wind power and the trend component of wind power is found and then a three-parameter power-law model is established. Then, the generation rate constrains of AGC generators is considered as the main constraint factor that influences wind power smoothing. By predicting the wind power variations in AGC control time-scale, a coordination AGC feedforward control strategy is proposed. The control strategy makes different types of AGC generators act in advance to improve the ability of the power system, corresponding to the forecasted ramp variations in wind power generation. Finally, the performance of the proposed coordination control strategy is verified and tested using the actual data from China. Simulation results show that with this new strategy, frequency deviation under wind power variations can be effectively decreased.

References

    1. 1)
      • 22. Liu, J., Ren, G., Wan, J., et al: ‘Variogram time-series analysis of wind speed’, Renew. Energy, 2016, 99, pp. 483491.
    2. 2)
      • 1. Zhang, F., Qiao, Y., Lu, Z.: ‘Extreme wind power forecast error analysis considering its application in day-ahead reserve capacity planning’, IET Renew. Power Gener., 2018, 12, (16), pp. 19311940.
    3. 3)
      • 6. Zou, J., Peng, C., Shi, J., et al: ‘State-of-charge optimising control approach of battery energy storage system for wind farm’, IET Renew. Power Gener., 2015, 9, (6), pp. 647652.
    4. 4)
      • 26. Saxena, S., Hote, Y.: ‘Load frequency control in power systems via internal model control scheme and model-order reduction’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 27492757.
    5. 5)
      • 17. Pinson, P., Madsen, H., Nielsen, H.A., et al: ‘From probabilistic forecasts to statistical scenarios of short-term wind power production’, Wind Energy, 2009, 12, (1), pp. 5162.
    6. 6)
      • 2. Wang, Z., Wang, W., Liu, C., et al: ‘Short-term probabilistic forecasting for regional wind power using distance-weighted kernel density estimation’, IET Renew. Power Gener., 2018, 12, (15), pp. 17251732.
    7. 7)
      • 25. Vrdoljak, K., Perić, N., Petrović, I.: ‘Sliding mode based load-frequency control in power systems’, Electr. Power Syst., 2010, 80, (5), pp. 514527.
    8. 8)
      • 28. Xu, Y., Li, F., Jin, Z., et al: ‘Dynamic gain-tuning control (DGTC) approach for AGC with effects of wind power’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 33393348.
    9. 9)
      • 15. North American Electric Reliability Corporation.‘Balancing and frequency control: a technical document’ (North American Electric Reliability Corporation, Atlanta, GA, USA, 2011).
    10. 10)
      • 7. Li, X., Hui, D., Lai, X.: ‘Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 464473.
    11. 11)
      • 8. Gayathri, N.S., Senroy, N., Kar, I.N.: ‘Smoothing of wind power using flywheel energy storage system’, IET Renew. Power Gener., 2017, 11, (3), pp. 289298.
    12. 12)
      • 4. Undrill, J.: ‘Power and frequency control as it relates to wind-powered generation’ (Ernest Orlando Lawrence Berkeley Nat. Lab., Berkeley, CA, USA, LBNL-4143E, 2010).
    13. 13)
      • 10. Guney, M.S., Tepe, Y.: ‘Classification and assessment of energy storage systems’, Renew. Sustain. Energy Rev., 2016, 75, pp. 11871197.
    14. 14)
      • 23. Liu, X., Zhang, Y., Lee, K.Y.: ‘Coordinated distributed MPC for load frequency control of power system with wind farms’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 51405150.
    15. 15)
      • 11. Ma, T., Yang, H., Lu, L., et al: ‘Optimal design of an autonomous solar–wind-pumped storage power supply system’, Appl. Energy, 2014, 160, pp. 728736.
    16. 16)
      • 13. Zakeri, B., Syri, S.: ‘Electrical energy storage systems: ‘a comparative life cycle cost analysis’, Renew. Sustain. Energy Rev., 2015, 42, pp. 569596.
    17. 17)
      • 24. Yousef, H., AL-Kharusi, K., Albadi, M., et al: ‘Load frequency control of a multi-area power system: an adaptive fuzzy logic approach’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 18221830.
    18. 18)
      • 31. Crujeiras, K.P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    19. 19)
      • 5. Zhang, K., Mao, C., Xie, J., et al: ‘Determination of characteristic parameters of battery energy storage system for wind farm’, IET Renew. Power Gener., 2014, 8, (1), pp. 2232.
    20. 20)
      • 12. Khodadoost Arani, A.A., Gharehpetian, G.B., Abedi, M.: ‘Review on energy storage systems control methods in microgrids’, Int. J. Electr. Power Energy Syst., 2019, 107, pp. 745757.
    21. 21)
      • 30. Bowman, A.W., Crujeiras, R.M.: ‘Inference for variograms’, comput’, Stat. Data Anal, 2013, 66, pp. 1931.
    22. 22)
      • 18. Morales, J.M., Minguez, R., Conejo, A.J.: ‘A methodology to generate statistically dependent wind speed scenarios’, Appl. Energy, 2010, 87, (3), pp. 843855.
    23. 23)
      • 3. Ganger, D., Zhang, J., Gittal, V.: ‘Forecast-based anticipatory frequency control in power systems’, IEEE Transactions on Power Systems., 2018, 33, (1), pp. 10041012.
    24. 24)
      • 9. Ghosh, S., Kamalasadan, S.: ‘An energy function-based optimal control strategy for output stabilization of integrated DFIG-flywheel energy storage system’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 19221931.
    25. 25)
      • 14. Díaz González, F., Sumper, A., Gomis-Bellmunt, O., et al: ‘A review of energy storage technologies for wind power applications’, Renew. Sustain. Energy Rev., 2012, 16, (4), pp. 21542171.
    26. 26)
      • 27. Ersdal, A.M., Imsland, L., Uhlen, K.: ‘Model predictive loadfrequency control’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 777785.
    27. 27)
      • 29. Gui, F., Wei, L.: ‘Application of variogram function in image analysis’. 2004 7th Int. Conf. on Signal Processing, Beijing, China, 2004, vol. 2.
    28. 28)
      • 21. Ouyang, T., Zha, X., Qin, L., et al: ‘Optimisation of time window size for wind power ramps prediction’, IET Renew. Power Gener., 2017, 11, (8), pp. 12701277.
    29. 29)
      • 19. Yang, L., He, M., Zhang, J., et al: ‘Support-vector-machineenhanced Markov model for short-termwind power forecast’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 791799.
    30. 30)
      • 20. Lin, W., Wen, J., Cheng, S., et al: ‘An investigation on the active-power variations of wind farms’, IEEE Trans. Ind. Appl., 2012, 48, (3), pp. 10871094.
    31. 31)
      • 16. Kiviluoma, J., Holttinen, H., Weir, D., et al: ‘Variability in large-scale wind power generation’, Wind Energy, 2016, 19, pp. 16491665.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0723
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0723
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address