access icon free Load frequency control of smart isolated power grids with high wind farm penetrations

The increasing contribution of wind turbine generators (WTGs) in power grids requires the control of wind generators and their impacts on the load frequency control (LFC). In this study, a detailed strategy for the control of WTGs in a smart power grid for LFC is presented. The WTGs are controlled by applying fuzzy logic controller with three inputs from wind velocity, frequency deviations, and wind velocity changes per second. The control takes into account for each WTG, an improved pitch angle controller to assist in fast damping of frequency deviations due to sudden high wind. Also, a feedback signal from frequency deviations, with the participation factor determined by a smart learning-based intelligent controller (BELBIC) is used to determine rotor speed deviations. The controller facilitates frequency stability, and lower variations in the output power of conventional units. Simulation results, performed on a test system with three interconnected zones, validate the effectiveness of the proposed control strategy.

Inspec keywords: frequency control; power generation control; turbogenerators; power system control; wind power plants; load regulation; smart power grids; power system stability; power grids; wind turbines; fuzzy control; rotors; damping

Other keywords: pitch angle controller; fuzzy logic controller; WTGs; frequency deviations; wind turbine generators; high wind farm penetrations; smart power grid; smart learning-based intelligent controller; smart isolated power grids; wind generators; load frequency control; frequency stability; wind velocity; LFC

Subjects: Power system control; Fuzzy control; Control of electric power systems; Frequency control; Wind power plants

References

    1. 1)
      • 4. Torkaman, H., Keyhani, A.: ‘A review of design consideration for doubly fed induction generator based wind energy system’, Electr. Power Syst. Res., 2018, 160, pp. 128141.
    2. 2)
      • 36. Bhowmik, S., Tomosovic, K., Bose, A.: ‘Communication models for third party load frequency control’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 543548.
    3. 3)
      • 40. Wind Group Association: ‘Wind velocity database of Binalood wind farm’, Sun-Air Research Institute of Ferdowsi University, Mashhad, Iran, 2016.
    4. 4)
      • 39. Chang-Chien, L.R., Hung, C.M., Yin, Y.C.: ‘Dynamic reserve allocation for system contingency by DFIG wind farms’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 729736.
    5. 5)
      • 6. Keyhani, A., Chatterjee, A.: ‘Automatic generation control structure for smart power grids’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 13101316.
    6. 6)
      • 7. Zhou, M., Zhai, J., Li, Q., et al: ‘Distributed dispatch approach for bulk AC/DC hybrid systems with high wind power penetration’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 33253336.
    7. 7)
      • 14. Ravanji, M.H., Parniani, M.: ‘Modified virtual inertial controller for prudential participation of DFIG-based wind turbines in power grid frequency regulation’, IET Renew. Power Gener., 2019, 13, (1), pp. 155164.
    8. 8)
      • 34. Golpira, H., Bevrani, H.: ‘Effect of physical constraints on the AGC dynamic behaviour in an interconnected power system’, Int. J. Adv. Mechatronic Syst., 2011, 3, (2), pp. 7987.
    9. 9)
      • 11. Daghigh, A., Javadi, H., Torkaman, H.: ‘Considering wind speed characteristics in the design of a coreless AFPM synchronous generator’, Int. J. Renew. Energy Res., 2016, 6, (1), pp. 263270.
    10. 10)
      • 31. Dorrah, H.T., El-Garhy, A.M., El-Shimy, M.E.: ‘PSO-BELBIC scheme for two-coupled distillation column process’, J. Adv. Res., 2011, 2, pp. 7383.
    11. 11)
      • 33. Golpira, H., Bevrani, H.: ‘Application of GA optimization for automatic generation control design in an interconnected power system’, Energy Convers. Manage., 2011, 52, (5), pp. 22472255.
    12. 12)
      • 8. Battistelli, C., Agalgaonkar, Y.P., Pal, B.C.: ‘Probabilistic dispatch of remote hybrid microgrids including battery storage and load management’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 13051317.
    13. 13)
      • 37. Grigg, C., Wong, P., Albrecht, P., et al: ‘The IEEE Reliability Test System-1996. A report prepared by the Reliability Test SystemTask Force of the Application of Probability Methods Subcommittee’, IEEE Trans. Power Syst., 1999, 1, (3), pp. 10101020.
    14. 14)
      • 29. Yazdani, A.M., Mahmoudi, A., Movahed, M.A., et al: ‘Intelligent speed control of hybrid stepper motor considering model uncertainty using brain emotional learning’, Can. J. Electr. Comput. Eng. Rev. Can. Genie Electr. Inf., 2018, 41, (2), pp. 95104.
    15. 15)
      • 3. Wang, Y., Meng, J., Zhang, X., et al: ‘Control of PMSG-based wind turbines for system inertial response and power oscillation damping’, IEEE Trans. Sustain. Energy, 2015, 6, (2), pp. 565574.
    16. 16)
      • 23. Fu, Y., Wang, Y., Zhang, X.: ‘Integrated wind turbine controller with virtual inertia and primary frequency response for grid dynamic frequency support’, IET Renew. Power Gener., 2017, 11, (8), pp. 11291137.
    17. 17)
      • 21. Prabhat Kumar, I., Kothari, D.P.: ‘Recent philosophies of automatic generation control strategies in power systems’, IEEE Trans. Power Syst., 2005, 2, (1), pp. 346357.
    18. 18)
      • 27. Iran Power Industry Standards – Power Quality Part Four: ‘Voltage and frequency variations’ (Iran Power Generation and transmission Management Organization, Tehran, Iran, 2002, 1st edn.), pp. 136.
    19. 19)
      • 12. Kundur, P.: ‘Power grid stability and control’ (McGraw-Hill, New York, USA., 1994), pp. 581627.
    20. 20)
      • 38. Wen, Z., Ding, L., He, S.: ‘Analysis on the effect of parameters of different wind generator on power grid transient stability’, Energy Power Eng., 2013, 5, (4B), pp. 363367.
    21. 21)
      • 35. Bevrani, H., Hiyama, T.: ‘Intelligent automatic generation control’ (Taylor and Francis, Oxfordshire, UK., 2011), pp. 1135.
    22. 22)
      • 17. Kou, P., Liang, D., Yu, L., et al: ‘Nonlinear model predictive control of wind farm for system frequency support’, IEEE Trans. Power Syst., 2019, 34, (5), pp. 35473561.
    23. 23)
      • 41. Ackermann, T.: ‘Wind power in power systems’ (John Wiley & Sons, Hoboken, New Jersey, 2005), pp. 526554.
    24. 24)
      • 2. Ochoa, D., Martinez, S.: ‘Fast-frequency response provided by DFIG-wind turbines and its impact on the grid’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 40024011.
    25. 25)
      • 16. Xue, Y., Tai, N.: ‘Review of contribution to frequency control through variable speed wind turbine’, Renew. Energy, 2011, 36, (6), pp. 16711677.
    26. 26)
      • 32. Coelingh, J.P.: ‘Geographical dispersion of wind power output in Ireland’, IWEA Irish Wind Energy Association, Ireland, 1999, pp. 49.
    27. 27)
      • 25. Slootweg, J.G., de Haan, W.H., Polinder, H., et al: ‘General model for representing variable speed wind turbines in power system dynamics simulations’, IEEE Trans. Power Syst., 2003, 18, (1), pp. 144151.
    28. 28)
      • 10. Chang-Chien, L.R., Ching Yin, Y.: ‘Strategies for operating wind power in a similar manner of conventional power plant’, IEEE Trans. Energy Convers., 2009, 24, (4), pp. 926934.
    29. 29)
      • 15. Zhang, X., Fu, Y., Wang, S., et al:Effects of two-area variable inertia on transient stabilisation in interconnected power grid with DFIG-based wind turbines’, IET Renew. Power Gener., 2017, 11, (5), pp. 696706.
    30. 30)
      • 19. Luo, H., Hu, Z., Zhang, H., et al: ‘Coordinated active power control strategy for deloaded wind turbines to improve regulation performance in AGC’, IEEE Trans. Power Syst., 2019, 34, (1), pp. 98108.
    31. 31)
      • 5. Einan, M., Torkaman, H., Pourgholi, M.: ‘Optimized fuzzy-cuckoo controller for active power control of battery energy storage system, photovoltaic, fuel cell and wind turbine in an isolated micro-grid’, Batteries, 2017, 3, (23), pp. 118.
    32. 32)
      • 26. Yao, J., Yu, M., Gao, W., et al: ‘Frequency regulation control strategy for PMSG wind-power generation system with flywheel energy storage unit’, IEEE Renew. Power Gener., 2017, 11, (8), pp. 10821093.
    33. 33)
      • 22. Saxena, S., Hote, Y.V.: ‘Load frequency control in power systems via internal model control scheme and model-order reduction’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 27492757.
    34. 34)
      • 20. Debs, A.S.: ‘Modern power systems control and operation’ (Kluwer Academic Publishers, Dordrecht, Netherlands, 1990), pp. 203236.
    35. 35)
      • 30. Rubaai, A., Castro-Sitiriche, M.J., Garuba, M., et al: ‘Implementation of artificial neural network-based tracking controller for high performance stepper motor drives’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 218227.
    36. 36)
      • 1. Yan, J., Zhang, H., Liu, Y., et al: ‘Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 32763284.
    37. 37)
      • 28. Gautam, D., Goel, L., Ayyanar, R., et al: ‘Control strategy to mitigate the impact of reduced inertia due to double fed induction generators on large power grids’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 214224.
    38. 38)
      • 9. Wang, Z., Wu, W.: ‘Coordinated control method for DFIG-based wind farm to provide primary frequency regulation service’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 26442659.
    39. 39)
      • 13. Kazemi Golkhandan, R., Aghaebrahimi, M.R., Farshad, M.: ‘Control strategies for enhancing frequency stability by DFIGs in a power grid with high percentage of wind power penetration’, Appl. Sci., 2017, 7, (11), p. 1140.
    40. 40)
      • 24. Yang, D., Kim, J., Kang, Y.C., et al: ‘Temporary frequency support of a DFIG for high wind power penetration’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 34283437.
    41. 41)
      • 18. Yang, J., Chen, Y., Hsu, Y.: ‘Small-signal stability analysis and particle swarm optimisation self-tuning frequency control for an islanding system with DFIG wind farm’, IET Gener. Transm. Distrib., 2019, 13, (4), pp. 563574.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0601
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0601
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading