Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Market design for integration of renewables into transactive energy systems

One of the major challenges of integrating distribution level producers/consumers (prosumers) into the transactive energy market is that the prosumers are not able to precisely predict their energy exchange with the market. This is because small prosumers usually operate intermittent renewable sources and have highly uncertain consumptions. As a consequence, traditional wholesale market mechanisms cannot be implemented in the transactive environment, as they penalise the participants with uncertain energy transactions, and therefore discourage the small prosumers from participating in the market. To this end, novel market design is introduced in this study, which enables distribution system operator to incorporate both the submitted price–quantity bids and the associated risks of prosumers into the settlement process. The proposed market design maximises the social welfare while managing the undesired costs caused by the stochastic nature of participants. The settlement mechanism is formulated as a quadratic problem, which can be efficiently solved for the transactive energy markets with a large number of participants. To demonstrate the merits of the proposed approach, it is implemented on a sample transactive energy market, and the results are discussed.

References

    1. 1)
      • 10. Dawn, S., Tiwari, P., Goswami, A. K.: ‘An efficient approach for establishing the economic and operating reliability via optimal coordination of wind-PSH-solar-storage hybrid plant in highly uncertain double auction competitive power market’, IET Renew. Power Gener., 2018, 12, (10), pp. 11891202.
    2. 2)
      • 6. Mohan, V., Singh, J. G., Ongsakul, W.: ‘Sortino ratio based portfolio optimization considering EVS and renewable energy in microgrid power market’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 219229.
    3. 3)
      • 26. Akaike, H.: ‘Fitting autoregressive models for prediction’, Ann. Inst. Stat. Math., 1969, 21, (1), pp. 243247.
    4. 4)
      • 17. Hao, H., Corbin, C. D., Kalsi, K., et al: ‘Transactive control of commercial buildings for demand response’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 774783.
    5. 5)
      • 3. Wu, D., Aliprantis, D. C., Ying, L.: ‘Load scheduling and dispatch for aggregators of plug-in electric vehicles’, IEEE Trans. Smart Grid, 2011, 3, (1), pp. 368376.
    6. 6)
      • 30. Farzin, H., Fotuhi-Firuzabad, M., Moeini, M.: ‘Reliability studies of modern distribution systems integrated with renewable generation and parking lots’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 431440.
    7. 7)
      • 4. Kok, K., Widergren, S.: ‘A society of devices: integrating intelligent distributed resources with transactive energy’, IEEE Power Energy Mag., 2016, 14, (3), pp. 3445.
    8. 8)
      • 18. Liang, Z., Alsafasfeh, Q., Jin, T., et al: ‘Risk-constrained optimal energy management for virtual power plants considering correlated demand response’, IEEE Trans. Smart Grid, 2017, 10, (2), pp. 15771587.
    9. 9)
      • 29. Moeini-Aghtaie, M., Farzin, H., Fotuhi-Firuzabad, M., et al: ‘Generalized analytical approach to assess reliability of renewable-based energy hubs’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 368377.
    10. 10)
      • 19. Shen, J., Jiang, C., Liu, Y., et al: ‘A microgrid energy management system and risk management under an electricity market environment’, IEEE Access, 2016, 4, pp. 23492356.
    11. 11)
      • 21. Renani, Y. K., Ehsan, M., Shahidehpour, M.: ‘Optimal transactive market operations with distribution system operators’, IEEE Trans. Smart Grid, 2017, 9, (6), pp. 66926701.
    12. 12)
      • 16. Zheng, Y., Dong, Z. Y., Luo, F. J., et al: ‘Optimal allocation of energy storage system for risk mitigation of DISCOs with high renewable penetrations’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 212220.
    13. 13)
      • 7. Masiello, R., Aguero, J. R.: ‘Sharing the ride of power: understanding transactive energy in the ecosystem of energy economics’, IEEE Power Energy Mag., 2016, 14, (3), pp. 7078.
    14. 14)
      • 13. Vahedipour-Dahraie, M., Rashidizadeh-Kermani, H., Najafi, H. R., et al: ‘Stochastic security and risk-constrained scheduling for an autonomous microgrid with demand response and renewable energy resources’, IET Renew. Power Gener., 2017, 11, (14), pp. 18121821.
    15. 15)
      • 9. Rahimi, F., Ipakchi, A., Fletcher, F.: ‘The changing electrical landscape: end-to-end power system operation under the transactive energy paradigm’, IEEE Power Energy Mag., 2016, 14, (3), pp. 5262.
    16. 16)
      • 12. Tang, W., Jain, R.: ‘Market mechanisms for buying random wind’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 16151623.
    17. 17)
      • 28. Chong, E. K., Zak, S. H.: ‘An introduction to optimization’ (John Wiley & Sons, Oxford, UK, 2013).
    18. 18)
      • 5. Grid-714 wise archit. Council: gridwise transactive energy framework version 1’, 2015.
    19. 19)
      • 22. Ghorani, R., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M.: ‘Optimal bidding strategy of transactive agents in local energy markets’, IEEE Trans. Smart Grid, 2018, early access.
    20. 20)
      • 1. Fotuhi-Friuzabad, M., Safdarian, A., Moeini-Aghtaie, M., et al: ‘Upcoming challenges of future electric power systems: sustainability and resiliency’, Sci. Iran., 2016, 23, (4), pp. 15651577.
    21. 21)
      • 23. Farzin, H., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M.: ‘Stochastic energy management of microgrids during unscheduled islanding period’, IEEE Trans. Ind. Inf., 2017, 13, (3), pp. 10791087.
    22. 22)
      • 14. Mehdizadeh, A., Taghizadegan, N.: ‘Robust optimisation approach for bidding strategy of renewable generation-based microgrid under demand side management’, IET Renew. Power Gener., 2017, 11, (11), pp. 14461455.
    23. 23)
      • 8. Kristov, L., De Martini, P., Taft, J. D.: ‘A tale of two visions: designing a decentralized transactive electric system’, IEEE Power Energy Mag., 2016, 14, (3), pp. 6369.
    24. 24)
      • 15. Wu, H., Shahidehpour, M., Alabdulwahab, A., et al: ‘A game theoretic approach to risk-based optimal bidding strategies for electric vehicle aggregators in electricity markets with variable wind energy resources’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 374385.
    25. 25)
      • 2. Asmus, P.: ‘Microgrids, virtual power plants and our distributed energy future’, Electr. J., 2010, 23, (10), pp. 7282.
    26. 26)
      • 24. Baringo, A., Baringo, L., Arroyo, J. M.: ‘Day-ahead self-scheduling of a virtual power plant in energy and reserve electricity markets under uncertainty’, IEEE Trans. Power Syst., 2018, 34, (3), pp. 18811894.
    27. 27)
      • 20. Dawn, S., Tiwari, P. K., Goswami, A. K.: ‘Efficient approach for establishing the economic and operating reliability via optimal coordination of wind–PSH–solar-storage hybrid plant in highly uncertain double auction competitive power market’, IET Renew. Power Gener., 2018, 12, (10), pp. 11891202.
    28. 28)
      • 11. Wang, Y., Zhou, Z., Botterud, A., et al: ‘Optimal wind power uncertainty intervals for electricity market operation’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 199210.
    29. 29)
      • 27. Fattaheian, S., Fotuhi-Firuzabad, M., Ghorani, R.: ‘Transmission system critical component identification considering full substations configuration and protection systems’, IEEE Trans. Power Syst., 2018, 33, (5), pp. 53655373.
    30. 30)
      • 25. Conejo, A. J., Carrión, M., Morales, J. M.: ‘Decision making under uncertainty in electricity markets’ (Springer, New York, NY, USA, 2010).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0551
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0551
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address