Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Energy router for SC: GC, SA and transition mode controls

Energy router for SC: GC, SA and transition mode controls

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

From the electrical point of view, the concept of smart community (SC) was defined as a distributed system consisting of a set of smart homes, distributed energy resources (DERs) and energy storage systems (ESSs) using SC controllers to enable smart power management. In this context, the SC energy management system (SCEMS) acts as aggregator of these resources, aiming to assure benefits for every SC stakeholder by setting the SC operation. The references given by the SCEMS must be accurately tracked by the energy routers (ERs), intended as one of the key components of the SC, acting as smart interface between the utility grid and the prosumers’ DER and ESS. This study proposes a flexible, robust and simple control strategy for a single-phase ER. The ER regulates the active and reactive powers in grid-connected (GC) mode, and the voltage and frequency when operating in stand-alone (SA) mode. A seamless transition between SA and GC is demonstrated, avoiding undesired transients. The design and implementation of the proposed control strategy is progressively explained. Finally, this is tested via simulation (in PSCAD/EMTDC software) and verified with the experimental prototype.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0500
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0500
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address