http://iet.metastore.ingenta.com
1887

Load–frequency control in microgrids using target-adjusted MPC

Load–frequency control in microgrids using target-adjusted MPC

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Model predictive control (MPC) has been applied in multiple ways to the load–frequency control problem. In this study, the authors illustrate and compare a target-adjusted MPC to a classical MPC formulation. The target-adjusted approach is also posed as optimal control law. The target-adjusted MPC is an alternative formulation that incorporates the system equilibrium into the control objective. The alternative derived controller can be used as substitute for classical MPCs.

References

    1. 1)
      • 1. Schweppe, F.C.: ‘Power systems ‘2000’: hierarchical control strategies’, IEEE Spectr., 1978, 15, (7), pp. 4247.
    2. 2)
      • 2. De Zotti, G., Pourmousavi, S.A., Madsen, H., et al: ‘Ancillary services 4.0: a top-to-bottom control-based approach for solving ancillary services problems in smart grids’, IEEE Access, 2018, 6, pp. 1169411706.
    3. 3)
      • 3. Madsen, H., Parvizi, J., Halvgaard, R.F., et al: ‘Control of electricity loads in future electric energy systems’, in Conejo, A.J., Dahlquist, E., Yan, J. (Eds.): ‘Handbook of clean energy systems: intelligent energy systems’, vol. 6 (Wiley, Denmark, 2014), pp. 22132236.
    4. 4)
      • 4. Bevrani, H.: ‘Robust power system frequency control. Power electronics and power systems’ (Springer International Publishing, Cham, 2014).
    5. 5)
      • 5. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, India, 1994).
    6. 6)
      • 6. Pereira, M., Muñoz de la Peña, D., Limon, D.: ‘Robust economic model predictive control of a community micro-grid’, Renew. Energy, 2017, 100, pp. 317.
    7. 7)
      • 7. Parisio, A., Rikos, E., Glielmo, L.: ‘Stochastic model predictive control for economic/environmental operation management of microgrids: an experimental case study’, J. Process Control, 2016, 43, pp. 2437.
    8. 8)
      • 8. Hans, C.A., Nenchev, V., Raisch, J., et al: ‘Minimax model predictive operation control of microgrids’, IFAC Proc. Vol., 2014, 47, (3), pp. 1028710292.
    9. 9)
      • 9. Pandey, S.K., Mohanty, S.R., Kishor, N.: ‘A literature survey on load–frequency control for conventional and distribution generation power systems’, Renew. Sustain. Energy Rev., 2013, 25, pp. 318334.
    10. 10)
      • 10. Shayeghi, H., Shayanfar, H.A., Jalili, A.: ‘Load–frequency control strategies: a state-of-the-art survey for the researcher’, Energy Convers. Manage., 2009, 50, (2), pp. 344353.
    11. 11)
      • 11. Shankar, R., Pradhan, S.R., Chatterjee, K., et al: ‘A comprehensive state of the art literature survey on LFC mechanism for power system’, Renew. Sustain. Energy Rev., 2017, 76, pp. 11851207.
    12. 12)
      • 12. Calovic, M.: ‘Linear regulator design for a load and frequency control’, IEEE Trans. Power Appar. Syst., 1972, PAS-91, (6), pp. 22712285.
    13. 13)
      • 13. Barcelo, W.R.: ‘Effect of power plant response on optimum load–frequency control system design’, IEEE Trans. Power Appar. Syst., 1973, PAS-92, (1), pp. 254258.
    14. 14)
      • 14. Fosha, C.E., Elgerd, O.I.: ‘The megawatt-frequency control problem: a new approach via optimal control theory’, IEEE Trans. Power Appar. Syst., 1970, PAS-89, (4), pp. 563577.
    15. 15)
      • 15. Zhao, C., Topcu, U., Low, S.H.: ‘Optimal load control via frequency measurement and neighborhood area communication’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 35763587.
    16. 16)
      • 16. Siraj, S.F., Muin, M.Z.A., Nor, K.M., et al: ‘A robust adaptive predictive load–frequency controller to compensate for model mismatch’. 2010 Fourth Int. Power Engineering and Optimization Conf. (PEOCO), Malaysia, 2010, pp. 3337.
    17. 17)
      • 17. Wang, Y., Zhou, R., Wen, C.: ‘New robust adaptive load–frequency control with system parametric uncertainties’, IEE Proc., Gener. Transm. Distrib, 1994, 141, (3), pp. 184190.
    18. 18)
      • 18. Yamashita, K., Taniguchi, T.: ‘Optimal observer design for load–frequency control’, Int. J. Electr. Power Energy Syst., 1986, 8, (2), pp. 93100.
    19. 19)
      • 19. Hain, Y., Kulessky, R., Nudelman, G.: ‘Identification-based power unit model for load–frequency control purposes’, IEEE Trans. Power Syst., 2000, 15, (4), pp. 13131321.
    20. 20)
      • 20. Ersdal, A.M., Imsland, L., Uhlen, K.: ‘Model predictive load–frequency control’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 777785.
    21. 21)
      • 21. Venkat, A.N., Hiskens, I.A., Rawlings, J.B., et al: ‘Distributed MPC strategies with application to power system automatic generation control’, IEEE Trans. Control Syst. Technol., 2008, 16, (6), pp. 11921206.
    22. 22)
      • 22. Shiroei, M., Ranjbar, A.M., Amraee, T.: ‘A functional model predictive control approach for power system load–frequency control considering generation rate constraint: functional MPC approach for power system LFC’, Int. Trans. Electr. Energy Syst., 2013, 23, (2), pp. 214229.
    23. 23)
      • 23. Pannocchia, G., Rawlings, J.B.: ‘Disturbance models for offset-free model-predictive control’, AIChE J., 2003, 49, (2), pp. 426437.
    24. 24)
      • 24. González, A.H., Adam, E.J., Marchetti, J.L.: ‘Conditions for offset elimination in state space receding horizon controllers: a tutorial analysis’, Chem. Eng. Process., 2008, 47, (12), pp. 21842194.
    25. 25)
      • 25. Schäfer, B.: ‘Decentral smart grid control’, New J. Phys., 2015, 17, (1), p. 015002.
    26. 26)
      • 26. Ulbig, A., Borsche, T.S., Andersson, G.: ‘Impact of low rotational inertia on power system stability and operation’, IFAC Proc. Vol., 2014, 47, (3), pp. 72907297.
    27. 27)
      • 27. Kristensen, N.R., Madsen, H., Jørgensen, S.B.: ‘Parameter estimation in stochastic grey-box models’, Automatica, 2004, 40, (2), pp. 225237.
    28. 28)
      • 28. Saxena, S.: ‘Load–frequency control strategy via fractional-order controller and reduced-order modeling’, Int. J. Electr. Power Energy Syst., 2019, 104, pp. 603614.
    29. 29)
      • 29. Van Dooren, P.: ‘A generalized eigenvalue approach for solving Riccati equations’, SIAM J. Sci. Stat. Comput., 1981, 2, (2), pp. 121135.
    30. 30)
      • 30. Laub, A.J.: ‘A Schur method for solving algebraic Riccati equations’. Massachusetts Institute of Technology, Laboratory for Information and Decision Systems, USA, 1978.
    31. 31)
      • 31. Muske, K.R., Rawlings, J.B.: ‘Model predictive control with linear models’, AIChE J., 1993, 39, (2), pp. 262287.
    32. 32)
      • 32. Huusom, J.K., Poulsen, N.K., Jørgensen, S.B., et al: ‘Tuning of methods for offset-free MPC based on ARX model representations’. Proc. 2010 American Control Conf., San Francisco, CA, USA, 2010, pp. 23552360.
    33. 33)
      • 33. Huusom, J.K., Poulsen, N.K., Jørgensen, S.B., et al: ‘Adaptive disturbance estimation for offset-free SISO model predictive control’. Proc. 2011 American Control Conf., San Francisco, CA, USA, 2011, pp. 24172422.
    34. 34)
      • 34. Banis, F., Guericke, D., Madsen, H., et al: ‘Utilizing flexibility in microgrids using model predictive control’. MedPower 2018, Croatia, 2018.
    35. 35)
      • 35. Jørgensen, J.B., Huusom, J.K., Rawlings, J.B.: ‘Finite horizon MPC for systems in innovation form’. Decision and Control and European Control Conf. (CDC-ECC), 2011 50th IEEE Conf., Orlando, USA, 2011, pp. 18961903.
    36. 36)
      • 36. Pannocchia, G., Rawlings, J.B.: ‘Robustness of MPC and disturbance models for multivariable ill-conditioned processes’. TWMCC, Texas-Wisconsin Modeling and Control Consortium, USA, 2001.
    37. 37)
      • 37. European Network of Transmission System Operators for Electricity. ‘The network code on load–frequency control and reserves’. The European Commission, 2013.
    38. 38)
      • 38. Prasath, G., Bagterp, J.: ‘Soft constraints for robust MPC of uncertain systems’, IFAC Proc. Vol. (IFAC-PapersOnLine), 2009, 7, pp. 225230.
    39. 39)
      • 39. Panda, S., Yegireddy, N.K.: ‘Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II’, Int. J. Electr. Power Energy Syst., 2013, 53, pp. 5463.
    40. 40)
      • 40. Gurobi Optimization. ‘Gurobi Optimizer Reference Manual’. 2018. Gurobi Optimization, LLC.
    41. 41)
      • 41. Anderson, E., Bai, Z., Bischof, C., et al: ‘LAPACK user's guide’ (SIAM, USA, 1999, 3rd edn.).
    42. 42)
      • 42. Open power system data, ENTSO-E transparency platform’. ENTSO-E, 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0487
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0487
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address