Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Power-system level classification of voltage-source HVDC converter stations based upon DC fault handling capabilities

To date, numerous concepts for converter station designs for use in voltage source converter (VSC)-based high-voltage direct current (HVDC) systems have been proposed. These differ not only in converter circuit topology, sub-module design, and control scheme but also in AC-or-DC switchgear and other auxiliary equipment. In the main, the existing literature categorises these converter stations according to just the converter circuit technologies and controls. However, for the development of network codes and to enable systematic network studies, a system-focused and technology-independent classification is needed. As such a classification does not yet exist, this study proposes a new framework, which categorises VSC station designs according to their capabilities during a DC-side fault and the method by which post-fault restoration may be achieved, given that these are the main differentiating factors from a system perspective. The classification comprises six converter station types and three time-intervals through which to fully characterise a design. Many well-known forms of converters are used as case studies, and simulation results are used to exemplify the classification framework. The outcome is a generic and technology-independent way of characterising converter station designs that is useful in wider power-system analysis but also for putting proposed converter stations into context.

References

    1. 1)
      • 52. Li, R., Fletcher, J. E., Xu, L., et al: ‘A hybrid modular multilevel converter with novel three-level cells for DC fault blocking capability’, IEEE Trans. Power Deliv., 2015, 30, (4), pp. 20172026.
    2. 2)
      • 24. Qin, J., Saeedifard, M., Rockhill, A., et al: ‘Hybrid design of modular multilevel converters for HVDC systems based on various submodule circuits’, IEEE Trans. Power Deliv., 2015, 30, (1), pp. 385394.
    3. 3)
      • 103. Loume, D. S., Bertinato, A., Raison, B., et al: ‘A multi-vendor protection strategy for HVDC grids based on low-speed DC circuit breakers’. Proc. IET ACDC 2017, Manchester, UK, 14–16 February 2017.
    4. 4)
      • 28. Judge, P.D., Merlin, M.M.C., Green, T.C., et al: ‘Thyristor-bypassed sub-module power-groups for achieving high-efficiency, DC fault tolerant multilevel VSCs’, IEEE Trans. Power Deliv., 2017, 33, (99), pp. 11.
    5. 5)
      • 53. Dargahi, V., Sadigh, A.K., Abarzadeh, M., et al: ‘A new family of modular multilevel converter based on modified flying-capacitor multicell converters’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 138147.
    6. 6)
      • 18. Fan, S., Zhang, K., Xiong, J., et al: ‘An improved control system for modular multilevel converters with new modulation strategy and voltage balancing control’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 358371.
    7. 7)
      • 57. Yang, X., Xue, Y., Chen, B., et al: ‘Novel modular multilevel converter against DC faults for HVDC applications’, CSEE J. Power Energy Syst., 2017, 3, (2), pp. 140149.
    8. 8)
      • 15. Hagiwara, M., Akagi, H.: ‘Control and experiment of pulsewidth-modulated modular multilevel converters’, IEEE Trans. Power Electron., 2009, 24, (7), pp. 17371746.
    9. 9)
      • 10. Feng, L., Gou, R., Yang, X., et al: ‘Design of high power density sub module in modular multilevel converter for VSC-HVDC project’. Proc. 10th Int. Conf. on Advances in Power System Control, Operation Management (APSCOM 2015), Hong Kong, November 2015, pp. 16.
    10. 10)
      • 56. Solas, E., Abad, G., Barrena, J. A., et al: ‘Modular multilevel converter with different submodule concepts part I: capacitor voltage balancing method’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 45254535.
    11. 11)
      • 17. Riar, B.S., Madawala, U.K.: ‘Decoupled control of modular multilevel converters using voltage correcting modules’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 690698.
    12. 12)
      • 3. MacDonald, A.E., Clack, C.T.M., Alexander, A., et al: ‘Future cost-competitive electricity systems and their impact on US CO2 emissions’, Nat. Clim. Chang, 2016, 6, p. 526. Available at https://doi.org/10.1038/nclimate2921.
    13. 13)
      • 67. Working group B4.37, ‘VSC transmission’, 269.
    14. 14)
      • 27. Merlin, M.M.C., Green, T.C., Mitcheson, P.D., et al: ‘The alternate arm converter: a new hybrid multilevel converter with DC-fault blocking capability’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 310317.
    15. 15)
      • 46. Zhang, L., Zou, Y., Yu, J., et al: ‘Modeling, control, and protection of modular multilevel converter-based multi-terminal HVDC systems: a review’, CSEE J. Power Energy Syst., 2017, 3, (4), pp. 340352.
    16. 16)
      • 76. Wang, Y., Marquardt, R.: ‘Future HVDC-grids employing modular multilevel converters and hybrid DC-breakers’. Proc. 2013 15th European Conf. on Power Electronics and Applications (EPE), Lille, France, September 2013.
    17. 17)
      • 81. Sarmiento, H.G., Pampin, G., de Leon, J.D.: ‘Feasibility studies for dynamic VAR and STATCOM applications to prevent a fast voltage collapse’. Proc. IEEE/PES Transmission and Distribution Conf., Dallas, Texas, USA, May 2006, pp. 14201425.
    18. 18)
      • 94. Magnusson, J., Saers, R., Liljestrand, L., et al: ‘Separation of the energy absorption and overvoltage protection in solid-state breakers by the use of parallel varistors’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 27152722.
    19. 19)
      • 100. WG B4.37: ‘Technical brochure 269: VSC transmission’ (CIGRE, Paris, France, 2005).
    20. 20)
      • 34. Cwikowski, O., Chang, B., Barnes, M., et al: ‘Fault current testing envelopes for VSC HVDC circuit breakers’, Transm. Distrib. IET Gener., 2016, 10, (6), pp. 13931400.
    21. 21)
      • 42. Abedrabbo, M., Wang, M., Tielens, P., et al: ‘Impact of DC grid contingencies on AC system stability’. Proc. 13th IET Int. Conf. on AC and DC Power Transmission (ACDC 2017), Manchester, UK, February 2017, pp. 17.
    22. 22)
      • 12. Spence, M., Plumpton, A., Rout, C., et al: ‘Design and characterisation of optimised protective thyristors for VSC systems’. Proc. PCIM Europe 2016; Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, May 2016, pp. 18.
    23. 23)
      • 98. Dantas, R., Liang, J., Adamczyk, A., et al: ‘Protection strategy for multi-terminal DC networks with fault current blocking capability of converters’. Proc. Proc. IET ACDC 2017, Manchester, UK, 14–16 February 2017.
    24. 24)
      • 47. Nguyen, T.H., Hosani, K.A., Moursi, M.S.E., et al: ‘An overview of modular multilevel converters in HVDC transmission systems with STATCOM operation during pole-to-pole DC short circuits’, IEEE Trans. Power Electron., 2019, 34, (5), pp. 41374160.
    25. 25)
      • 85. Deng, Q., Liu, X., Soman, R., et al: ‘Primary and backup protection for fault current limited MVDC shipboard power systems’. Proc. 2015 IEEE Electric Ship Technologies Symp. (ESTS), Alexandria, Virginia, USA, June 2015, pp. 4047.
    26. 26)
      • 13. Chivite-Zabalza, J., Perrier, J., Boden, M., et al: ‘Development of a full-bridge sub-module for HVDC and STATCOM markets’. Proc. PCIM Europe 2017; Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, May 2017, pp. 17.
    27. 27)
      • 21. Merlin, M.M.C., Green, T.C., Mitcheson, P.D., et al: ‘Cell capacitor sizing in modular multilevel converters and hybrid topologies’. Proc. European Conf. on Power Electronics and Applications (EPE'14-ECCE Europe), Lappeenranta, Finland, August 2014, pp. 110.
    28. 28)
      • 68. Haugland, P.: ‘It's time to connect: technical description of HVDC Light® technology’, 2008.
    29. 29)
      • 38. Häfner, J., Jacobson, B.: ‘Proactive hybrid HVDC breakers – a key innovation for reliable HVDC grids’. Proc. Cigré, Bologna, 2011, vol. 264.
    30. 30)
      • 74. Dijkhuizen, F., Berggren, B.: ‘Zoning in high voltage DC (HVDC) grids using hybrid DC breaker’. Proc. EPRI HVDC and FACTS Conf., Palo Alto, USA, 2013, pp. 18.
    31. 31)
      • 23. Perez, M.A., Bernet, S., Rodriguez, J., et al: ‘Circuit topologies, modeling, control schemes, and applications of modular multilevel converters’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 417.
    32. 32)
      • 9. Oates, C.: ‘Modular multilevel converter design for VSC HVDC applications’, IEEE Trans. Emerg. Sel. Top. Power Electron., 2015, 3, (2), pp. 505515.
    33. 33)
      • 14. Wang, L., Cheng, G., Bureau, T., et al: ‘Automation and control design of overvoltage protection for sub-modules in modular multilevel converter’. Proc. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conf. (ITNEC), Cheng Du, China, December 2017, pp. 10481052.
    34. 34)
      • 75. Tahata, K., Ka, S., Tokoyoda, S., et al: ‘HVDC circuit breakers for HVDC grid applications’. Proc. Cigré AORC Technical Meeting, Tokyo, Japan, 2014.
    35. 35)
      • 64. Judge, P.D., Chaffey, G., Merlin, M.M.C., et al: ‘Dimensioning and modulation index selection for the hybrid modular multilevel converter’, IEEE Trans. Power Electron., 2018, 33, (5), pp. 38373851.
    36. 36)
      • 78. Elserougi, A.A., Abdel-Khalik, A.S., Massoud, A.M., et al: ‘A new protection scheme for HVDC converters against DC-side faults with current suppression capability’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 15691577.
    37. 37)
      • 73. Ängquist, L., Norrga, S., Modeer, T., et al: ‘Fast HVDC breaker using reduced-rating power electronics’. 13th IET Int. Conf. on AC and DC Power Transmission (ACDC 2017), Manchester, UK, 2014.
    38. 38)
      • 80. ENTSO-E, European Commission: ‘Establishing a network code on requirements for grid connection of high voltage direct current systems and direct current connected power park modules’, 2015.
    39. 39)
      • 87. Jovcic, D., Lin, W., Nguefeu, S., et al: ‘Full bridge MMC converter controller for HVDC operation in normal and DC fault conditions’. Proc. 2017 Int. Symp. on Power Electronics (Ee), Novi Sad, Serbia, 2017, pp. 16.
    40. 40)
      • 72. Grieshaber, W., Dupraz, D., Penache, J.P., et al: ‘Development and test of a 120 kV direct current circuit breaker’. CIGRE 2014, Paris, France, 24–29 August 2014.
    41. 41)
      • 89. Dorn, J., Seta, P.L., Schettler, F., et al: ‘Full-bridge VSC: an essential enabler of the transition to an energy system dominated by renewable sources’. Proc. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, Massachusetts, USA, July 2016, pp. 15.
    42. 42)
      • 6. Lesnicar, A., Marquardt, R.: ‘An innovative modular multilevel converter topology suitable for a wide power range’. 2003 IEEE Bologna Power Tech Conf. Proc., Bologna, 3 June 2003, p. 6.
    43. 43)
      • 92. Peng, C., Wen, J., Wang, X., et al: ‘Development of DC transfer switch for ultra high voltage DC transmission systems’, Proc. CSEE, 2012, 32, (16), pp. 151156.
    44. 44)
      • 82. Singh, B., Saha, R., Chandra, A., et al: ‘Static synchronous compensators (STATCOM): a review’, IET Power Electron., 2009, 2, (4), pp. 297324.
    45. 45)
      • 93. Eriksson, T., Backman, M., Halén, S.: ‘A low loss mechanical HVDC breaker for HVDC grid applications’. Proc. Cigré, Paris, France, 2014, 24.
    46. 46)
      • 1. Bresesti, P., Kling, W.L., Hendriks, R.L., et al: ‘HVDC connection of offshore wind farms to the transmission system’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 3743.
    47. 47)
      • 62. Ilves, K., Bessegato, L., Harnefors, L., et al: ‘Semi-full-bridge submodule for modular multilevel converters’. Proc. 2015 9th Int. Conf. on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, South Korea, June 2015, pp. 10671074.
    48. 48)
      • 19. Ilves, K., Antonopoulos, A., Norrga, S., et al: ‘Steady-state analysis of interaction between harmonic components of arm and line quantities of modular multilevel converters’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 5768.
    49. 49)
      • 86. Chaffey, G., Green, T. C.: ‘Low speed protection methodology for a symmetrical monopolar HVDC network’. Proc. 13th IET Int. Conf. on AC and DC Power Transmission (ACDC 2017), Manchester, UK, February 2017, pp. 16.
    50. 50)
      • 71. Yang, B., Cao, D., Shi, W., et al: ‘A novel commutation-based hybrid HVDC circuit breaker’. Proc. Cigré 2017 Canada, Winnipeg, Canada, 30 September–6 October 2017.
    51. 51)
      • 59. Kim, H., Kang, J., Kim, S., et al: ‘DC fault protection for modular multilevel converter HVDC using asymmetrical unipolar full-bridge submodule’. Proc. 2015 9th Int. Conf. on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, South Korea, June 2015, pp. 10831089.
    52. 52)
      • 55. Soeiro, T.B., Kolar, J.W.: ‘Novel 3-level hybrid neutral-point-clamped converter’. Proc. IECON 2011–37th Annual Conf. of the IEEE Industrial Electronics Society, Melbourne, Australia, November 2011, pp. 44574462.
    53. 53)
      • 69. Hassanpoor, A., Häfner, Y., Nami, A., et al: ‘Cost-effective solutions for handling DC faults in VSC HVDC transmission’. Proc. 2016 18th European Conf. on Power Electronics and Applications (EPE'16 ECCE Europe), Prague, Czech Republic, September 2016, pp. 17.
    54. 54)
      • 66. Judge, P.D., Merlin, M.M.C., Green, T., et al: ‘Thyristor/diode-bypassed sub-module power-groups for improved efficiency in modular multilevel converters’, IEEE Trans. Power Deliv., 2018, 34, (1), pp. 8494.
    55. 55)
      • 90. Münch, P., Görges, D., Izák, M., et al: ‘Integrated current control, energy control and energy balancing of modular multilevel converters’. Proc. IECON 2010–36th Annual Conf. on IEEE Industrial Electronics Society, Glendale, Arizona, USA, November 2010, pp. 150155.
    56. 56)
      • 104. Winkelnkemper, M., Schwager, L., Blaszczyk, P., et al: ‘Short circuit output protection of MMC in voltage source control mode’. Proc. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, Wisconsin, USA, 2016, pp. 16.
    57. 57)
      • 29. Rao, H.: ‘Architecture of nan'ao multi-terminal VSC-HVDC system and its multi-functional control’, CSEE J. Power Energy Syst., 2015, 1, (1), pp. 918.
    58. 58)
      • 20. Ilves, K., Norrga, S., Harnefors, L., et al: ‘On energy storage requirements in modular multilevel converters’, IEEE Trans. Power Electron., 2014, 29, (1), pp. 7788.
    59. 59)
      • 43. Ellis, A., Kazachkov, Y., Muljadi, E., et al: ‘Description and technical specifications for generic WTG models: a status report’. Proc. 2011 IEEE/PES Power Systems Conf. and Exposition, Phoenix, Arizona, USA, March 2011, pp. 18.
    60. 60)
      • 77. Xiang, B., Zhang, L., Yang, K., et al: ‘Arcing time of a DC circuit breaker based on a superconducting current-limiting technology’, IEEE Trans. Appl. Supercond., 2016, 26, (7), pp. 15.
    61. 61)
      • 26. Merlin, M.M.C., Soto-Sanchez, D., Judge, P.D., et al: ‘The extended overlap alternate arm converter: a voltage-source converter with DC fault ride-through capability and a compact design’, IEEE Trans. Power Electron., 2018, 33, (5), pp. 38983910.
    62. 62)
      • 79. Gowaid, I.A.: ‘A low-loss hybrid bypass for DC fault protection of modular multilevel converters’, IEEE Trans. Power Deliv., 2017, 32, (2), pp. 599608.
    63. 63)
      • 22. Akagi, H.: ‘Classification, terminology, and application of the modular multilevel cascade converter (MMCC)’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 31193130.
    64. 64)
      • 48. Raju, M.N., Sreedevi, J., Mandi, R.P, et al: ‘Modular multilevel converters technology: a comprehensive study on its topologies, modelling, control and applications’, IET Power Electron., 2019, 12, (2), pp. 149169.
    65. 65)
      • 63. Merlin, M.M.C., Green, T.C., Mitcheson, P.D., et al: ‘A new hybrid multi-level voltage-source converter with DC fault blocking capability’. 9th IET Int. Conf. on AC and DC Power Transmission (ACDC), Birmingham, UK, 2010, pp. 15.
    66. 66)
      • 5. Van Hertem, D., Gomis-Bellmunt, O., Liang, J.: ‘HVDC grids: for offshore and supergrid of the future’ (Wiley-IEEE Press, Hoboken, NJ, USA, 2016).
    67. 67)
      • 70. Cigré Joint Working Group A3-B4.34: ‘Technical requirements and specifications of state-of-the-art HVDC switching equipment’.
    68. 68)
      • 4. Flourentzou, N., Agelidis, V.G., Demetriades, G.D.: ‘VSC-based HVDC power transmission systems: an Overview’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 592602.
    69. 69)
      • 96. Petino, C., Heidemann, M., Eichhoff, D., et al: ‘Application of multilevel full bridge converters in HVDC multiterminal systems’, IET Power Electron., 2016, 9, (2), pp. 297304.
    70. 70)
      • 7. Marquardt, R.: ‘Modular multilevel converter: an universal concept for HVDC-networks and extended DC-bus-applications’. Proc. 2010 Int. Power Electronics Conf. (IPEC), Sapporo, Japan, June 2010, pp. 502507.
    71. 71)
      • 49. Marquardt, R.: ‘Modular multilevel converter topologies with DC-short circuit current limitation’. Proc. 2011 IEEE 8th Int. Conf. On Power Electronics and ECCE Asia (ICPE ECCE), Jeju, South Korea, May 2011, pp. 14251431.
    72. 72)
      • 41. Huang, L., Yang, X., Xu, P., et al: ‘The evolution and variation of sub-module topologies with DC-fault current clearing capability in MMC-HVDC’. Proc. 2017 IEEE 3rd Int. Future Energy Electronics Conf. and ECCE Asia (IFEEC 2017 – ECCE Asia), Kaohsiung, Taiwan, June 2017, pp. 19381943.
    73. 73)
      • 51. Nami, A., Liang, J., Dijkhuizen, F., et al: ‘Analysis of modular multilevel converters with DC short circuit fault blocking capability in bipolar HVDC transmission systems’. Proc. 2015 17th European Conf. on Power Electronics and Applications (EPE'15 ECCE-Europe), Geneva, Switzerland, September 2015, pp. 110.
    74. 74)
      • 32. Nami, A., Liang, J., Dijkhuizen, F., et al: ‘Modular multilevel converters for HVDC applications: review on converter cells and functionalities’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 1836.
    75. 75)
      • 45. Hu, J., Zeng, R., He, Z.: ‘DC fault ride-through of MMCs for HVDC systems: a review’, J. Eng., 2016, 2016, (9), pp. 321331.
    76. 76)
      • 44. Debnath, S., Qin, J., Bahrani, B., et al: ‘Operation, control, and applications of the modular multilevel converter: a review’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 3753.
    77. 77)
      • 60. Yu, X., Wei, Y., Jiang, Q.: ‘STATCOM operation scheme of the CDSMMMC during a pole-to-pole DC fault’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 11501159.
    78. 78)
      • 30. Zhoushan five-terminal VSC-HVDC project’. Available at http://www.nrec.com/en/case/-449.html.
    79. 79)
      • 88. Siemens.: ‘HVDC PLUS – the Decisive Step Ahead’.
    80. 80)
      • 83. Lerch, E.N., Povh, D., Xu, L.: ‘Advanced SVC control for damping power system oscillations’, IEEE Trans. Power Syst., 1991, 6, (2), pp. 524535.
    81. 81)
      • 16. Hagiwara, M., Maeda, R., Akagi, H.: ‘Control and analysis of the modular multilevel cascade converter based on double-star chopper-cells (MMCCDSCC)’, IEEE Trans. Power Electron., 2011, 26, (6), pp. 16491658.
    82. 82)
      • 31. SGRI Participates in Construction of Zhang-Bei DC Grid Pilot Project_Press Release_C-EPRI’. Available at http://www.cepri.com.cn/release/details_66_745.html.
    83. 83)
      • 58. Yang, X., Xue, Y., Chen, B., et al: ‘Reverse blocking sub-module based modular multilevel converter with DC fault ride-through capability’. Proc. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, Wisconsin, USA, September 2016, pp. 17.
    84. 84)
      • 84. Johansson, S., Asplund, G., Jansson, E., et al: ‘Power system stability benefits with VSC DC-transmission systems’. Proc. CIGRE Conf., Paris, France, April 2004, pp. 18.
    85. 85)
      • 50. Zhang, J., Zhao, C.: ‘The research of SM topology with DC fault tolerance in MMC-HVDC’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 15611568.
    86. 86)
      • 40. Cui, S., Kim, S., Jung, J.J., et al: ‘Principle, control and comparison of modular multilevel converters (MMCs) with DC short circuit fault ride-through capability’. Proc. 2014 IEEE Applied Power Electronics Conf. and Exposition – APEC 2014, Fort Worth, Texas, USA, March 2014, pp. 610616.
    87. 87)
      • 97. Wang, M., Leterme, W., Chaffey, G., et al: ‘Pole rebalancing methods for pole-to-ground faults in symmetrical monopolar HVDC grids’, IEEE Trans. Power Deliv., 2019, 34, (1), pp. 188197.
    88. 88)
      • 37. Sander, R., Suriyah, M., Leibfried, T.: ‘Characterization of a countercurrent injection-based HVDC circuit breaker’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 29482956.
    89. 89)
      • 36. Liu, G., Xu, F., Xu, Z., et al: ‘Assembly HVDC breaker for HVDC grids with modular multilevel converters’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 931941.
    90. 90)
      • 91. Pauli, B., Mauthe, G., Ruoss, E., et al: ‘Development of a high current HVDC circuit breaker with fast fault clearing capability’, IEEE Trans. Power Deliv., 1988, 3, (4), pp. 20722080.
    91. 91)
      • 65. Lu, M., Zhou, Q., Hu, J., et al: ‘On hybrid modular multilevel converters with active DC fault ride-through capability’. Proc. 12th IET Int. Conf. on AC and DC Power Transmission (ACDC 2016), Beijing, China, May 2016, pp. 16.
    92. 92)
      • 33. Franck, C.M.: ‘HVDC circuit breakers: a review identifying future research needs’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 9981007.
    93. 93)
      • 25. Adam, G.P., Finney, S.J., Williams, B.W.: ‘Hybrid converter with AC side cascaded H-bridge cells against H-bridge alternative arm modular multilevel converter: steady-state and dynamic performance’, IET Gener., Transm. Distrib., 2013, 7, (3), pp. 318328.
    94. 94)
      • 95. Skarby, P., Steiger, U.: ‘An ultra-fast disconnecting switch for a hybrid HVDC breaker – a technical breakthrough’. Proc. 2013 Cigré 2013 Canada Conf., Calgary, Alberta, Canada, 9–11 September 2013.
    95. 95)
      • 8. Xu, T., Donoghue, M. W., Davidson, C.C.: ‘IGBT overcurrent turn-off tests for the MMC-based VSC valves’. Proc. 2013 15th European Conf. on Power Electronics and Applications (EPE), Lille, France, September 2013, pp. 110.
    96. 96)
      • 61. Yu, X., Wei, Y., Jiang, Q.: ‘New submodule circuits for modular multilevel current source converters with DC fault ride through capability’. Proc. 2016 IEEE Applied Power Electronics Conf. and Exposition (APEC), Long Beach, California, USA, March 2016, pp. 14681474.
    97. 97)
      • 99. Asplund, G., Eriksson, K., Svensson, K.: ‘DC transmission based on voltage source converters’. Proc. Proc. CIGRÉ SC14 Colloquium, South Africa, 29–30 September 1997.
    98. 98)
      • 11. Chen, H., Coo, W., Tan, Z., et al: ‘Hardware design and key submodule testing of the world's first single-level press-pack IGBT based modular multilevel converter for VSC HVDC’. Proc. 8th IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2016), Glasgow, UK, April 2016, pp. 16.
    99. 99)
      • 54. Meynard, T.A., Foch, H.: ‘Multi-level conversion: high voltage choppers and voltage-source inverters’. Proc., 23rd Annual IEEE Power Electronics Specialists Conf., 1992. PESC ‘92 Record, Toledo, Spain, June 1992, vol. 1, pp. 397403.
    100. 100)
      • 102. Chongxue, J., Yu, L., Nannan, W., et al: ‘Comparative analysis of DC line fault recovery technology in VSC HVDC’. Proc. CIGRE SC A3, B4 and D1 Colloquium, Winnipeg, Canada, October 2017, p. 13.
    101. 101)
      • 101. Dantas, R., Liang, J., Ugalde-Loo, C. E., et al: ‘Progressive fault isolation and grid restoration strategy for MTDC networks’, IEEE Trans. Power Deliv., 2018, 33, (2), pp. 909918.
    102. 102)
      • 39. Li, X., Song, Q., Liu, W., et al: ‘Protection of nonpermanent faults on DC overhead lines in MMC-based HVDC systems’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 483490.
    103. 103)
      • 2. Kirby, N.M., Xu, L., Luckett, M., et al: ‘HVDC transmission for large offshore wind farms’, Power Eng. J., 2002, 16, (3), pp. 135141.
    104. 104)
      • 35. Keshavarzi, D., Farjah, E., Ghanbari, T: ‘Hybrid DC circuit breaker and fault current limiter with optional interruption capability’, IEEE Trans. Power Electron., 2017, 33, (3), pp. 23302338.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0462
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0462
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address