access icon free Soft switching flyback inverter for photovoltaic AC module applications

The soft switching flyback inverters still cannot provide high efficiency and low output current total harmonic distortion (THD) in all load ranges. Therefore, a new flyback inverter with soft switching for photovoltaic AC module applications is presented in this study. The introduced inverter is simple and a small auxiliary circuit is added to the conventional topology of the flyback inverter. Since the primary current of the transformer is not affected by the auxiliary branch, the output current THD does not increase. In addition, all of the high-frequency switches of the proposed topology are switched under soft switching condition, which allows high-switching frequency. Hence, high efficiency, as well as compact design, can be achieved in the proposed inverter. Moreover, the voltage overshoot of the main switch during the turn-off process is limited. This effect decreases the conduction losses because the lower voltage rating switch can be used. Furthermore, a new control method is presented, which provides high efficiency in all load ranges. The operations of the introduced flyback inverter and component selection have been discussed in detail. The performance of the proposed inverter with the auxiliary circuit and corresponding controllers are validated with the help of experimental results.

Inspec keywords: harmonic distortion; zero current switching; switching convertors; invertors; zero voltage switching; photovoltaic power systems

Other keywords: soft switching flyback inverter; auxiliary circuit; lower voltage rating switch; high-frequency switches; photovoltaic AC module applications; introduced flyback inverter; introduced inverter; main switch; load ranges; low output current total harmonic distortion; soft switching condition; output current THD; high-switching frequency; high efficiency

Subjects: Power convertors and power supplies to apparatus; Solar power stations and photovoltaic power systems; Power electronics, supply and supervisory circuits

References

    1. 1)
      • 22. Arab Ansari, S., Moghani, J.S., Mohammadi, M.: ‘Analysis and implementation of a new zero current switching flyback inverter’, Int. J. Circuit Theory Appl., 2019, 47, (1), pp. 103132.
    2. 2)
      • 18. Kim, Y.-H., Ji, Y.-H., Kim, J.-G., et al: ‘A new control strategy for improving weighted efficiency in photovoltaic AC module-type interleaved flyback inverters’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 26882699.
    3. 3)
      • 6. Arab Ansari, S., Mizani, A.R., Ashouri, S., et al: ‘Fault ride-through capability enhancement for microinverter applications’, J. Renew. Energy, 2019, 2019.
    4. 4)
      • 16. Zhang, F., Xie, Y., Hu, Y., et al: ‘A hybrid boost-flyback/flyback micro-inverter for photovoltaic applications’, IEEE Trans. Ind. Electron., 2019, early access.
    5. 5)
      • 10. Kim, S., Lee, S.-H., Lee, J.S., et al: ‘Dual-mode flyback inverters in grid-connected photovoltaic systems’, IET Renew. Power Gener., 2016, 10, (9), pp. 14021412.
    6. 6)
      • 2. Ansari, S.A., Moghani, J.S.: ‘A novel high voltage gain non-coupled inductor SEPIC converter’, IEEE Trans. Ind. Electron., 2019, 66, (9), pp. 70997108.
    7. 7)
      • 3. Ansari, S.A., Mizani, A., Moghani, J.S., et al: ‘A new high step-up gain SEPIC converter for renewable energy applications’. 2019 10th Int. Power Electronics, Drive Systems and Technologies Conf. (PEDSTC), Shiraz, Iran, 2019, pp. 539544.
    8. 8)
      • 20. Sukesh, N., Pahlevaninezhad, M., Jain, P.K.: ‘Analysis and implementation of a single-stage flyback PV microinverter with soft switching’, IEEE Trans. Ind. Electron., 2014, 61, (4), pp. 18191833.
    9. 9)
      • 4. Kyritsis, A.C., Tatakis, E., Papanikolaou, N.: ‘Optimum design of the current-source flyback inverter for decentralized grid-connected photovoltaic systems’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 281293.
    10. 10)
      • 24. I.S.C. Committee: ‘IEEE standard for interconnecting distributed resources with electric power systems’, IEEE Std, 2009, pp. 15472003.
    11. 11)
      • 8. Ansari, S.A., Hossein Hosseinian, S., Moghani, J.S.: ‘Low-voltage ride-through capability of flyback inverter under BCM operation for AC module applications’. 2017 Smart Grid Conf. (SGC), Tehran, Iran, 2017, pp. 16.
    12. 12)
      • 5. Zhang, Z., He, X.-F., Liu, Y.-F.: ‘An optimal control method for photovoltaic grid-tied-interleaved flyback microinverters to achieve high efficiency in wide load range’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 50745087.
    13. 13)
      • 14. Liang, T.-J., Tseng, K.: ‘Analysis of integrated boost-flyback step-up converter’, IEE Proc., Electr. Power Appl., 2005, 152, (2), pp. 217225.
    14. 14)
      • 11. Li, Y., Oruganti, R.: ‘A low cost flyback CCM inverter for AC module application’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 12951303.
    15. 15)
      • 17. Kasa, N., Iida, T., Bhat, A.: ‘Zero-voltage transition flyback inverter for small scale photovoltaic power system’. 2005 IEEE 36th Power Electronics Specialists Conf., Recife, Brazil, 2005, pp. 20982103.
    16. 16)
      • 19. Tan, G., Wang, J., Ji, Y.: ‘Soft-switching flyback inverter with enhanced power decoupling for photovoltaic applications’, IET Electr. Power Appl., 2007, 1, (2), pp. 264274.
    17. 17)
      • 12. Ansari, S., Skandari, A., Milimonfared, J., et al: ‘A new control method for an interleaved flyback inverter to achieve high efficiency and low output current THD’. 2018 9th Annual Power Electronics, Drives Systems and Technologies Conf. (PEDSTC), Tehran, Iran, 2018, pp. 8994.
    18. 18)
      • 23. Patel, H.K.: ‘Voltage transient spikes suppression in flyback converter using dissipative voltage snubbers’. 2008 3rd IEEE Conf. on Industrial Electronics and Applications, Singapore, Singapore, 2008, pp. 897901.
    19. 19)
      • 21. Rezaei, M.A., Lee, K.-J., Huang, A.Q.: ‘A high-efficiency flyback micro-inverter with a new adaptive snubber for photovoltaic applications’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 318327.
    20. 20)
      • 7. Gao, M., Chen, M., Zhang, C., et al: ‘Analysis and implementation of an improved flyback inverter for photovoltaic AC module applications’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 34283444.
    21. 21)
      • 9. Karbakhsh, F., Amiri, M., Zarchi, H.A.: ‘Two-switch flyback inverter employing a current sensorless MPPT and scalar control for low cost solar powered pumps’, IET Renew. Power Gener., 2016, 11, (5), pp. 669677.
    22. 22)
      • 15. Shitole, A.B., Sathyan, S., Suryawanshi, H., et al: ‘Soft-switched high voltage gain boost-integrated flyback converter interfaced single-phase grid-tied inverter for SPV integration’, IEEE Trans. Ind. Appl., 2018, 54, (1), pp. 482493.
    23. 23)
      • 13. Cha, W.-J., Cho, Y.-W., Kwon, J.-M., et al: ‘Highly efficient microinverter with soft-switching step-up converter and single-switch-modulation inverter’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 35163523.
    24. 24)
      • 1. Braun, M., Stetz, T., Bründlinger, R., et al: ‘Is the distribution grid ready to accept large-scale photovoltaic deployment? State of the art, progress, and future prospects’, Prog. Photovolt., Res. Appl., 2012, 20, (6), pp. 681697.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0365
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0365
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading