access icon free Wind speed estimation based on a novel multivariate Weibull distribution

Good practice in smart grids is networked sensors topologies which give the ability to fuse sensors to obtain a new feature based on sensors’ complementarity. Moreover, to get a prediction based on other sensors, possibly in other areas, in case of sensor failure. This ability may be achieved by correlating sensor data based on their historical observations. This study addresses the problem of stochastic multivariate modelling within the framework of cyber-physical systems. Weibull distribution function (WDF) was found to be the best probability distribution function to fit wind variations. The main idea of this study is to propose a generalised multivariate stochastic model to describe the joint probability between multi-stochastic variables. A novel multivariate WDF for wind modelling is proposed to estimate wind speed in one location based on wind speed data on other location(s). The suggested approach is applied to three cases to demonstrate the efficacy of the developed technique. It is pointed out that this approach could be generalised for the multivariate WDF of wind modelling situations. Finally, it is shown that there are existing structures resemblances between the wind Weibull versus normal distribution models arising from the fact WDF reflects a natural phenomenon with some restrictions.

Inspec keywords: power engineering computing; cyber-physical systems; Weibull distribution; wind power plants; smart power grids; stochastic processes; sensor fusion

Other keywords: Weibull distribution function; sensor data; stochastic multivariate modelling; networked sensor topologies; multivariate Weibull distribution; sensor failure; cyber-physical systems; multistochastic variables; probability distribution function; multivariate WDF; wind speed estimation; generalised multivariate stochastic model; smart grids; wind speed data; joint probability; wind modelling; historical observations; wind variations

Subjects: Wind power plants; Signal processing and detection; Sensor fusion; Other topics in statistics; Data handling techniques; Power systems; Other topics in statistics; Power engineering computing

References

    1. 1)
      • 27. Novey, M., Adali, T., Roy, A.: ‘A complex generalized Gaussian distribution – characterization, generation, and estimation’, IEEE Trans. Signal Process., 2009, 58, (3), pp. 14271433.
    2. 2)
      • 26. Ahrendt, P.: ‘The multivariate Gaussian probability distribution’. Tech. Rep, Technical University of Denmark, 2005.
    3. 3)
      • 16. Chang, T.P.: ‘Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application’, Appl. Energy, 2011, 88, (1), pp. 272282.
    4. 4)
      • 15. Morgan, E.C., Lackner, M., Vogel, R.M., et al: ‘Probability distributions for offshore wind speeds’, Energy Convers. Manage., 2011, 52, (1), pp. 1526.
    5. 5)
      • 34. Sheng, H., Wang, X.: ‘Probabilistic power flow calculation using non-intrusive low-rank approximation method’, IEEE Trans. Power Syst., 2019, 34, (4), pp. 30143025.
    6. 6)
      • 28. Fang, K.W.: ‘Symmetric multivariate and related distributions’ (Chapman and Hall/CRC, Boca Raton London New York, 2017).
    7. 7)
      • 37. Zuluaga, C.D., Álvarez, M.A.: ‘Approximate probabilistic power flow’. Int. Workshop on Data Analytics for Renewable Energy Integration, Universidad Tecnológica de Pereira, Colombia, September 2016, pp. 4353.
    8. 8)
      • 2. Hosseinzadeh, N., Al Shereiqi, A., Albadi, M., et al: ‘Constructing a multi-microgrid with the inclusion of renewable energy in Oman's rural power system’, J. Eng. Res., 2018, 15, (1), pp. 6172.
    9. 9)
      • 10. Salim, O.M., Dorrah, H.T., El-Kahawy, M.A.: ‘A novel algorithm to generate synthetic data for continuous-state stationary stochastic process (wind data application)’. Twentieth Int. Middle East Power Systems Conf. (MEPCON), Cairo, Egypt, 2018, pp. 333338.
    10. 10)
      • 19. Peng, C., Zhang, J., Yan, H.: ‘Adaptive event-triggering H load frequency control for network-based power systems’, IEEE Trans. Ind. Electron., 2017, 65, (2), pp. 16851694.
    11. 11)
      • 33. Fang, D., Zou, M., Djokic, S.: ‘Probabilistic OPF incorporating uncertainties in wind power outputs and line thermal ratings’. 2018 IEEE Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, 2018.
    12. 12)
      • 38. Aho, J., Pao, L., Buckspan, A., et al: ‘A novel active power control system for wind turbines capable of AGC and primary response’. AIAA/ASME Wind Symp., USA, January 2013.
    13. 13)
      • 31. Zhou, S.L., Liu, Z.L.: ‘Probabilistic power flow prediction of microgrid comprising wind and photovoltaic generation’. 2016 Int. Conf. on Computer Engineering and Information Systems, Shangri-La's Fijian Resort and Spa, Fiji, November 2016.
    14. 14)
      • 1. Kidmo, D., Danwe, R., Doka, S.Y., et al: ‘Statistical analysis of wind speed distribution based on six Weibull methods for wind power evaluation in Garoua, Cameroon’, Revue des Energies Renouvelables, 2015, 18, (1), pp. 105125.
    15. 15)
      • 30. Jorgensen, B.: ‘Statistical properties of the generalized inverse Gaussian distribution’, vol. 9 (Springer Science & Business Media, Veriag New Yourk Inc, 2012).
    16. 16)
      • 17. Dakhlallah, T.K., Zohdy, M.A., Salim, O.M.: ‘Application of sensor similarity, complementarity and type-2 fuzzy logic to a dynamic security monitoring system’. National Aerospace and Electronics Conf. (NAECON), Dayton, Ohio, USA, 2011, pp. 2531.
    17. 17)
      • 36. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘Fuzzy unscented transform for uncertainty quantification of correlated wind/PV microgrids: possibilistic – probabilistic power flow based on RBFNNs’, IET Renew. Power Gener., 2017, 11, (6), pp. 867877.
    18. 18)
      • 12. Zhang, G.P.: ‘Time series forecasting using a hybrid ARIMA and neural network model’, Neurocomputing, 2003, 50, pp. 159175.
    19. 19)
      • 18. Peng, C., Sun, H., Yang, M., et al: ‘A survey on security communication and control for smart grids under malicious cyber attacks’, IEEE Trans. Syst. Man Cybern., Syst., 2019, 49, (8), pp. 15541569.
    20. 20)
      • 39. Chen, Z., Liu, J., Lin, Z., et al: ‘Variable-constrained model predictive control of coordinated active power distribution for wind-turbine cluster’, Appl. Sci., 2019, 9, (1), p. 112.
    21. 21)
      • 22. Liu, S., Li, G., Xie, H., et al: ‘Correlation characteristic analysis for wind speed in different geographical hierarchies’, Energies, 2017, 10, (2), p. 237.
    22. 22)
      • 20. Li, S., Proano, J., Zhang, D.: ‘Microgrid power flow study in grid-connected and islanding modes under different converter control strategies’. 2012 IEEE Power and Energy Society General Meeting, San Diego, California, USA, 2012.
    23. 23)
      • 7. Vladislavleva, E., Friedrich, T., Neumann, F., et al: ‘Microgrids-large scale integration of microgeneration to low voltage grids’. CIGRE 2006, Paris, France, 2006.
    24. 24)
      • 25. Koski, T.: ‘Multivariate Gaussian distribution. Auxiliary notes for time series analysis SF2943’ (KTH Royal Institute of Technology, Stockholm, Sweden, 2013).
    25. 25)
      • 23. Carrillo, C., Cidrás, J., Díaz-Dorado, E., et al: ‘An approach to determine the Weibull parameters for wind energy analysis: the case of Galicia (Spain)’, Energies, 2014, 7, (4), p. 26762700.
    26. 26)
      • 6. Salim, O.M., Zohdy, M.A., Dorrah, H.T, et al: ‘Adaptive neuro-fuzzy short-term wind-speed forecasting for Egypt's East-Coast’, Int. J. Sustain. Energy, 2014, 33, (1), pp. 1634.
    27. 27)
      • 8. Tenfen, D., Finardi, E.C.: ‘A mixed integer linear programming model for the energy management problem of microgrids’, Electr. Power Syst. Res., 2015, 122, pp. 1928.
    28. 28)
      • 35. Fan, M., Vittal, V., Heydt, G.T., et al: ‘Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants. IEEE Trans. Power Syst., 2012, 27, (4), pp. 22512261.
    29. 29)
      • 21. Maina, A.W., Nishizawa, Y., Kamau, J.N., et al: ‘Correlation of wind patterns using Weibull and Rayleigh models for ST’. Xavier Secondary School, Naivasha and Jkuat sites’. The 2015 JKUAT Scientific, Jomo Kenyatta University of Agriculture and Technology, 2017.
    30. 30)
      • 24. Do, C.B.: ‘The multivariate Gaussian distribution’. Section Notes, Lecture on Machine Learning, CS, 2008, 229.
    31. 31)
      • 11. Lawan, S., Abidin, W.A.W.Z., Chai, W.Y., et al: ‘Different models of wind speed prediction; a comprehensive review’, Int. J. Sci. Eng. Res., 2014, 5, (1), pp. 17601768.
    32. 32)
      • 29. Gupta, A.K., Xu, J.: ‘On some tests of the covariance matrix under general conditions’, Ann. Inst. Stat. Math., 2006, 58, (1), pp. 101114.
    33. 33)
      • 9. Wu, Y.-K., Hong, J.-S.: ‘A literature review of wind forecasting technology in the world’ (IEEE Lausanne Power Tech., Lausanne, Switzerland, 2007).
    34. 34)
      • 4. Vladislavleva, E., Friedrich, T., Neumann, F., et al: ‘Predicting the energy output of wind farms based on weather data: important variables and their correlation’, Renew. Energy, 2013, 50, pp. 236243.
    35. 35)
      • 5. Llaria, A., Curea, O., Jiménez, J., et al: ‘Survey on microgrids: unplanned islanding and related inverter control techniques’, Renew. Energy, 2011, 36, (8), pp. 20522061.
    36. 36)
      • 14. Takle, E.S., Brown, J.M.: ‘Note on the use of Weibull statistics to characterize wind-speed data’, J. Appl. Meteorol., 1978, 17, (4), p. 556559.
    37. 37)
      • 3. Twidell, J., Weir, T.: ‘Renewable energy resources’ (Routledge, London, 2015, 3rd edn.), 816.
    38. 38)
      • 13. Azad, A.K., Rasul, M.G., Alam, M.M., et al: ‘Analysis of wind energy conversion system using Weibull distribution’, Procedia Eng., 2014, 90, pp. 725732.
    39. 39)
      • 32. Chagas, E.A., Rodrigues, A.B., da Silva, M.G.: ‘Probabilistic power flow for power quality assessment of islanded microgrid’. 2018 IEEE Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, June 2018, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0313
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0313
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading