access icon free Experimental investigation of an optimised pitch control for a vertical-axis turbine

This study reports on an experimental method to obtain the motion law of a pitch system required for maximising the power output of a vertical-axis water turbine (VAWT). In order to allow for the close monitoring of blade forces, the turbine is modelled with a single oscillating hydrofoil in a water channel. The pitch motion is controlled numerically, and the pitch angle and forces are measured as a function of time. The objective of the optimisation is to maximise the time integral of the thrust coefficient. The optimisation is based on a hardware-in-the-loop method and uses a multi-scale, full-factorial approach. The optimal motion law is found through successive improvements with an adaptive parameter step refinement, while the integral of the driving force coefficient is used as a target function. An optimal pitch trajectory with a significant improvement in the thrust coefficient was obtained for a single operating point. The benefit of this methodology is the possibility to study a complete range of turbine designs through the variation of two dimensionless parameters (tip–speed ratio and reduced frequency k), within very short runtime, minimising time and costs investigation, compared to more common numerical methods, or experiments on a complete VAWT.

Inspec keywords: pitch control (position); numerical analysis; motion control; optimisation; marine vehicles; force measurement; numerical control; hydraulic turbines; hydrodynamics; blades; angular measurement; hardware-in-the loop simulation

Other keywords: optimisation; full-factorial approach; optimal motion law; vertical-axis turbine designs; single oscillating hydrofoil; optimised pitch control system; driving force coefficient; optimal pitch trajectory; hardware-in-the-loop method; VAWT; thrust coefficient; adaptive parameter step refinement; blade forces; numerical methods; water channel; vertical-axis water turbine

Subjects: Other numerical methods; Control of hydraulic systems; Spatial variables control; Optimisation; Mechanical components; Measurement; Fluid mechanics and aerodynamics (mechanical engineering); Control technology and theory (production); Numerical analysis; Optimisation techniques; Power and plant engineering (mechanical engineering)

References

    1. 1)
      • 35. Nasiri-Zarandi, R., Mirsalim, M., Cavagnino, A.: ‘Analysis, optimization, and prototyping of a brushless DC limited-angle torque-motor with segmented rotor pole tip structure’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 49854993.
    2. 2)
      • 21. Khalid, S.S., Liang, Z., Qi-hu, S., et al: ‘Difference between fixed and variable pitch vertical axis tidal turbine-using CFD analysis in CFX’, Res. J. Appl. Sci. Eng. Technol., 2013, 5, (1), pp. 319325.
    3. 3)
      • 15. Liu, H., Wang, Y., Tang, Q., et al: ‘Individual pitch control strategy of wind turbine to reduce load fluctuations and torque ripples’. Int. Conf. on Renewable Power Generation, Beijing, October 2015.
    4. 4)
      • 34. Hoerner, S., Abbaszadeh, S.: ‘Kollmorgen akd drive communication library for python’. Software repository, 2018. Available at https://bitbucket.org/sthoerner/kollmorgen_drive_comm/.
    5. 5)
      • 1. Whittlesey, R.W., Liska, S., Dabiri, J.O.: ‘Fish schooling as a basis for vertical axis wind turbine farm design’, Bioinspiration Biomimetics, 2010, 5, (3), p. 035005.
    6. 6)
      • 26. Kavade, R.K., Ghanegaonkar, P.M.: ‘Effect of best position blade pitching on power coefficient of VAWT at different tip speed ratio by SST & DMST model’, FME Tran., 2018, 46, (4), pp. 560566.
    7. 7)
      • 25. Liang, Y.-B., Zhang, L.-X., Li, E.-X., et al: ‘Blade pitch control of straight-bladed vertical axis wind turbine’, J. Central South Univ., 2016, 23, (5), pp. 11061114.
    8. 8)
      • 27. Erfort, G., von Backström, T.W., Venter, G.: ‘Reduction in the torque ripple of a vertical axis wind turbine through foil pitching optimization’, Wind Eng., 2019, 1, p. 0309524X1983671, DOI: 10.1177/0309524X19836711.
    9. 9)
      • 6. Carrigan, T.J., Dennis, B.H., Han, Z.X., et al:Aerodynamic shape optimization of a vertical-axis wind turbine using differential evolution’, ISRN Renew. Energy, 2012, 2012, pp. 116.
    10. 10)
      • 24. Paillard, B., Astolfi, J.A., Hauville, F.: ‘URANSE simulation of an active variable-pitch cross-flow Darrieus tidal turbine: sinusoidal pitch function investigation’, Int. J. Mar. Energy, 2015, 11, pp. 926.
    11. 11)
      • 3. Hoerner, S., Abbaszadeh, S., Maître, T., et al: ‘Experimental evaluation of the characteristics of highly flexible structures in vertical-axis water turbines’, J. Fluid Struct., 2019, 88, pp. 1330.
    12. 12)
      • 22. Ferreira, C.S., Madsen, H.A., Barone, M., et al: ‘Comparison of aerodynamic models for vertical axis wind turbines’, J. Phys., Conf. Ser., 2014, 524, p. 012125.
    13. 13)
      • 17. Herman, D., Gundersen, Z.: ‘A novel flexible foil vertical axis turbine for river, ocean and tidal applications’, Appl. Energy, 2015, 151, pp. 6066.
    14. 14)
      • 10. Yamazaki, W.: ‘Experiment / simulation integrated shape optimization using variable fidelity Kriging model approach’, Adv. Mech, Des. Syst. Manuf., 2017, 11, (5), pp. 19.
    15. 15)
      • 29. Maître, T., Amet, E.: ‘Modelling of the flow in a Darrieus water turbine: wall grid refinement analysis and comparison with experiments’, Renew. Energy, 2013, 51, pp. 497512.
    16. 16)
      • 33. LEGI publication team: ‘Legi – the hydrodynamic tunnel’. Laboratory webpage, 2018. Available at http://www.legi.grenoble-inp.fr/web/spip.php?article1264&lang=en.
    17. 17)
      • 5. Bedon, G., Bett, S.D., Benini, E.: ‘Performance-optimized airfoil for Darrieus wind turbines’, Renew. Energy, 2016, 94, pp. 328340.
    18. 18)
      • 8. Ivanov, T.D., Simonović, A.M., Svorcan, J.S., et al: ‘VAWT optimization using genetic algorithm and CST airfoil parameterization’, FME Trans., 2017, 45, pp. 2631.
    19. 19)
      • 19. Mauri, M., Bayati, I., Belloli, M.: ‘Design and realisation of a high-performance active pitch-controlled H-darrieus VAWT for urban installations’. 3rd Renewable Power Generation Conf., Naples, Italy, 2014.
    20. 20)
      • 2. Dabiri, J.O.: ‘Potential order-of-magnitude enhancement of wind farm power density via counter- rotating vertical-axis wind turbine arrays’, J. Renew. Sustain. Energy, 2011, 3, p. 043104.
    21. 21)
      • 32. Ly, K.H., Chasteau, V.A.L.: ‘Experiments on an oscillating aerofoil and applications to wind-energy converters’, J. Energy, 1981, 5, (2), pp. 116121.
    22. 22)
      • 20. Lazauskas, L., Kirke, B.K.: ‘Modelling passive variable pitch cross flow hydrokinetic turbines to maximize performance and smooth operation’, Renew. Energy, 2012, 45, pp. 4150.
    23. 23)
      • 30. Laneville, A., Vittecoq, P.: ‘Dynamic stall: the case of the vertical axis wind turbine’, J. Sol. Energy Eng. Trans. ASME, 1986, 108, pp. 140145.
    24. 24)
      • 23. Zhang, L., Liang, Y., Liu, X., et al: ‘Effect of blade pitch angle on aerodynamic performance of straight-bladed vertical axis wind turbine’, J. Central South Univ., 2014, 21, pp. 14171427.
    25. 25)
      • 11. Hashem, I., Mohamed, M.H.: ‘Aerodynamic performance enhancements of H-rotor Darrieus wind turbine’, Energy, 2018, 142, pp. 531545.
    26. 26)
      • 16. Han, B., Zhou, L., Yang, F., et al: ‘Individual pitch controller based on fuzzy logic control for wind turbine load mitigation’, IET Renew. Power Gener., 2016, 10, (5), pp. 687693.
    27. 27)
      • 9. Ragni, D., Ferreira, C.F., Barone, M.: ‘Experimental and numerical investigation of an optimized airfoil for vertical axis wind turbines’. 32nd ASME Wind Energy Symp. AIAA SciTech (American Institute of Aeronautics and Astronautics), National Harbor, Maryland, 2014, pp. 110.
    28. 28)
      • 13. Qiao, Y., Han, S., Deng, Y., et al: ‘Research on variable pitch control strategy of wind turbine for tower vibration reduction’, J. Eng., 2017, 2017, (13), pp. 20052008.
    29. 29)
      • 28. Thönnißen, F., Marnett, M., Roidl, B., et al: ‘A numerical analysis to evaluate Betz's law for vertical axis wind turbines’, J. Phys., Conf., 2016, 753, p. 022056.
    30. 30)
      • 7. Daróczy, L., Janiga, G., Thévenin, D.: ‘Computational fluid dynamics based shape optimization of airfoil geometry for an H-rotor using a genetic algorithm’, Eng. Optim., 2018, 50, (9), pp. 14831499.
    31. 31)
      • 12. Munteanu, I., Bratcu, A.I., Bacha, S., et al: ‘Hardware-in-the-loop-based simulator for a class of variable-speed wind energy conversion systems: design and performance assessment’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 564576.
    32. 32)
      • 18. MacPhee, D.W., Beyene, A.: ‘Fluid-structure interaction analysis of a morphing vertical axis wind turbine’, J. Fluid Struct., 2016, 60, pp. 143159.
    33. 33)
      • 31. McCroskey, W.J.: ‘Special opportunities in helicopter aerodynamics’ (Springer-Verlag, New York, 1986).
    34. 34)
      • 14. Soliman, M., Malik, O.P., Westwick, D.T.: ‘Multiple model multiple-input multiple-output predictive control for variable speed variable pitch wind energy conversion systems’, IET Renew. Power Gener., 2011, 5, (2), pp. 124136.
    35. 35)
      • 4. Hashem, I., Mohamed, M.H., Hafiz, A.A.: ‘Unsteady investigation of small-scale shrouded wind turbine with a brimmed diffuser’, Energy, 2016, 136, (118), pp. 345368.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0309
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0309
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading