access icon free Unidirectional isolated high-frequency link DC/AC converter for grid integration of DC sources

Most of the converters used for the grid integration of DC resources are multi-stage DC/AC converters with a huge intermediate DC-link capacitor. This bulky DC-link capacitor increases the converter volume and cost, reduces its lifetime and reliability and, causes converters fault ride-through problems. For this purpose, DC/AC converters without any intermediate energy storage components are proposed in the literature named high-frequency AC (HFAC) link converters. However, due to a large number of active switches, modulation and commutation methods of these converters are overly complex compared with their conventional multi-stage versions. In this study, a new isolated unidirectional converter without any intermediate energy storage components, and with a reduced number of active switches are proposed for the grid integration of DC sources. The proposed HFAC converter structure is simple but more efficient and reliable than its conventional isolated multi-stage and HFAC versions. The converter modulation and commutation methods which are more simple than those of its conventional HFAC version, and its voltage and current gains are also presented. The performance of the proposed converter is verified through simulation in the islanded and grid-connected modes of operation. A simple experimental setup is also provided to validate the simulated converter.

Inspec keywords: energy storage; power grids; DC-AC power convertors; switching convertors; power generation economics; power generation reliability; distributed power generation

Other keywords: converter modulation method; multistage versions; grid-connected mode; isolated unidirectional converter; DC-link capacitor; high-frequency link DC-AC converter; DC sources; islanded mode; energy storage components; commutation methods; multistage DC-AC converter; grid integration; HFAC versions

Subjects: Power system management, operation and economics; Power electronics, supply and supervisory circuits; Distributed power generation; Reliability; DC-AC power convertors (invertors); Control of electric power systems

References

    1. 1)
      • 7. Kramer, W., Chakraborty, S., Kroposki, B., et al: ‘Advanced power electronic interfaces for distributed energy systems’. Rep. NREL/Tp–581–42672, National Renewable Energy Laboratory, Cambridge, MA, 2008.
    2. 2)
      • 3. Katiraei, F., Iravani, R., Hatziargyriou, N., et al: ‘Microgrids management’, IEEE Power Energy Mag., 2008, 6, (3), pp. 5465.
    3. 3)
      • 20. Inagaki, K., Okuma, S.: ‘High frequency link DC/AC converters using three phase output PWM cycloconverters for uninterruptible power supplies’. 13th Int. Telecommunications Energy Conf., 1991. INTELEC'91, Kyoto, Japan, 1991, pp. 580586.
    4. 4)
      • 23. Amirabadi, M., Toliyat, H.A., Alexander, W.C.: ‘A multiport AC link PV inverter with reduced size and weight for stand-alone application’, IEEE Trans. Ind. Appl., 2013, 49, (5), pp. 22172228.
    5. 5)
      • 21. Amirabadi, M., Balakrishnan, A., Toliyat, H.A., et al: ‘High-frequency AC-link PV inverter’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 281291.
    6. 6)
      • 13. Lin, F.J., Lu, K.C., Ke, T.H., et al: ‘Reactive power control of three-phase grid-connected PV system during grid faults using Takagi-Sugeno-Kang probabilistic fuzzy neural network control’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 55165528.
    7. 7)
      • 4. Barton, J.P., Infield, D.G.: ‘Energy storage and its use with intermittent renewable energy’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 441448.
    8. 8)
      • 10. Yang, S., Bryant, A., Mawby, P., et al: ‘An industry-based survey of reliability in power electronic converters’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 14411451.
    9. 9)
      • 24. Wheeler, P.W., Rodriguez, J., Clare, J.C., et al: ‘Matrix converters: a technology review’, IEEE Trans. Ind. Electron., 2002, 49, (2), pp. 276288.
    10. 10)
      • 14. Ding, G., Gao, F., Tian, H., et al: ‘Adaptive DC–link voltage control of two-stage photovoltaic inverter during low voltage ride–through operation’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 41824194.
    11. 11)
      • 1. Ipakchi, A., Albuyeh, F.: ‘Grid of the future’, IEEE Power Energy Mag., 2009, 7, (2), pp. 5262.
    12. 12)
      • 16. Yamato, I., Tokunaga, N.: ‘Power loss reduction techniques for three phase high frequency link DC-AC converter’. 24th Annual IEEE Power Electronics Specialists Conf., 1993. PESC'93 Record, Seattle, WA, USA, 1993, pp. 663668.
    13. 13)
      • 18. De, D., Ramanarayanan, V.: ‘A DC-to-three-phase-AC high-frequency link converter with compensation for nonlinear distortion’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 36693677.
    14. 14)
      • 5. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al: ‘Power-electronic systems for the grid integration of renewable energy sources: a survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016.
    15. 15)
      • 9. Song, Y., Wang, B.: ‘Survey on reliability of power electronic systems’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 591604.
    16. 16)
      • 17. Matsui, M., Nagai, M., Mochizuki, M., et al: ‘High-frequency link DC/AC converter with suppressed voltage clamp circuits-naturally commutated phase angle control with self-turn-off devices’, IEEE Trans. Ind. Appl., 1996, 32, (2), pp. 293300.
    17. 17)
      • 2. Hatziargyriou, N., Asano, H., Iravani, R., et al: ‘Microgrids’, IEEE Power Energy Mag., 2007, 5, (4), pp. 7894.
    18. 18)
      • 12. Mirhosseini, M., Pou, J., Agelidis, V.G.: ‘Single-and two-stage inverter-based grid-connected photovoltaic power plants with ride-through capability under grid faults’, IEEE Trans. Sustain. Energy, 2014, 6, (3), pp. 11501159.
    19. 19)
      • 11. Jalilian, A., Hagh, M.T., Abapour, M., et al: ‘DC-link fault current limiter-based fault ride-through scheme for inverter-based distributed generation’, IET Renew. Power Gener., 2015, 9, (6), pp. 690699.
    20. 20)
      • 19. Wang, M., Huang, Q., Guo, S., et al: ‘Soft-switched modulation techniques for an isolated bidirectional DC–AC’, IEEE Trans. Power Electron., 2018, 33, (1), pp. 137150.
    21. 21)
      • 8. Blaabjerg, F., Teodorescu, R., Liserre, M., et al: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409.
    22. 22)
      • 6. Blaabjerg, F., Chen, Z., Kjaer, S.B.: ‘Power electronics as efficient interface in dispersed power generation systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 11841194.
    23. 23)
      • 25. Rashid, M.H.: ‘Power electronics handbook: devices, circuits and applications’ (Academic press, Cambridge, MA, USA, 2010).
    24. 24)
      • 22. Norrga, S., Meier, S., Ostlund, S.: ‘A three-phase soft-switched isolated AC/DC converter without auxiliary circuit’, IEEE Trans. Ind. Appl., 2008, 44, (3), pp. 836844.
    25. 25)
      • 15. Kawabata, T., Honjo, K., Sashida, N., et al: ‘High frequency link DC/AC converter with PWM cycloconverter’. Conf. Record of the 1990 IEEE Industry Applications Society Annual Meeting, Seattle, WA, USA, 1990, pp. 11191124.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0284
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0284
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading