access icon free Analysis, reduction and robust stabiliser design of sub-synchronous resonance in an IEEE FBM augmented by DFIG-based wind farm

This study modifies the IEEE first benchmark model (FBM) by connecting nearby doubly-fed induction generator (DFIG) wind farms to utilize the inbuilt convertor controller for damping the sub-synchronous resonance (SSR) oscillations. The overall model was evaluated to determine the induction generator effect (IGE) and torsional interaction (TI) of sub-synchronous resonance (SSR) at various compensation levels, wind speeds, and system parameter settings both with and without a DFIG wind farm. The results of this detailed analysis demonstrated that augmenting an IEEE FBM with a DFIG wind farm suppresses SSR-induced IGE in the power system. An optimal orientation was investigated from rotor-side converter (RSC) and grid-side converter (GSC) of DFIG wind farm using residue configuration to design a SSR supplementary damping controller (SSDC). To suppress the TI effect of SSR, the SSDC implements damping control using three different feedback signals: line current, line power, and voltage across a series capacitor. A robust signal for achieving smooth damping under various operating conditions was defined in terms of several key characteristics, namely, high average residue magnitude, average phase angle of residue and avoidance of destabilisation of other dominant modes. The proposed model was validated using eigenvalue analysis, participation factor calculation and time-domain simulation.

Inspec keywords: time-domain analysis; eigenvalues and eigenfunctions; power grids; synchronous generators; oscillations; wind power plants; power system stability; power generation control; damping; asynchronous generators; subsynchronous resonance

Other keywords: IEEE first benchmark model; sub-synchronous oscillations; synchronous generator; DFIG-based wind farm; DFIG wind farm suppresses SSR-induced IGE; power system; SSDC; sub-synchronous resonance; reduction; SSR damping controller; doubly fed induction generator wind farm; wind speeds; robust stabiliser design; IEEE FBM; torsional interaction; TI effect; DFIG wind farm converter controllers

Subjects: Asynchronous machines; Control of electric power systems; Power system control; Wind power plants; Synchronous machines

References

    1. 1)
      • 14. Ewais, A.M., Uglde-Loo, C., Ekanayake, J.B., et al: ‘The influence of flxed-speed induction generator-based turbines on subsynchronous resonance’. Proc. Int. Conf. IEEE power Engineering, Soest, Germany, 2011.
    2. 2)
      • 4. Joshii, A., Pillai, G.N., Ghosh, A.: ‘Torsional oscillation studies in an SSSC compensated power system’, Electr. Power Syst. Res., 2000, 55, pp. 5764.
    3. 3)
      • 19. Shah, N.N., Joshi, S.R.: ‘Small signal stability analysis of DFIG based wind farms connected to SMIB’. Proc. Int. Conf. IEEE Smart Grids, Power and Advance Control Engineering (ICSPACE), GAT Bangalore, India, 17–19 August 2017.
    4. 4)
      • 17. Bin, Z., Hui, L., Mingyu, W., et alAn active power control strategy for a DFLG-based wind farm to depress the subsynchronous resonance of a power system’, Int. J. Electr. Power, 2015, 69, pp. 327334.
    5. 5)
      • 18. Leon, A.E., Mauricio, J.M., Solsona, J.A.: ‘Subsynchronous resonance mitigation using variable-speed wind energy conversion systems’, IET Gener. Transm. Distrib., 2013, 7, (5), pp. 511525.
    6. 6)
      • 15. Ewais, A.M., Liang, J., Ekanayake, J.B., et al: ‘The influence of fully rated converter based wind turbine on SSR’. Proc. Int. Conf. IEEE PES ISGT Asia, Tianjin, China, 2012.
    7. 7)
      • 29. Fan, L., Miao, Z.: ‘Mitigating SSR using DFIG-based wind generation’, IEEE Trans. Sust. Energy, 2012, 3, (3), pp. 349358.
    8. 8)
      • 21. Padiar, K.R.: ‘Analysis of sub-synchronous resonance in power systems’ (Springer Science+Business Media, New York, USA, 1999).
    9. 9)
      • 5. Joshi, S.R., Kulkarni, A.M.: ‘Analysis and performance of TCSC control schemes using a modular high bandwidth discrete-time dynamic model’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 2329.
    10. 10)
      • 24. Pal, B., Mei, F.: ‘Modelling adequacy of the doubly fed induction generator for small-signal stability studies in power system’, IET Renew. Power Gener., 2008, 2, (3), pp. 181190.
    11. 11)
      • 7. Narendra, K.S., Nagarajan, T.: ‘Mitigation of induction generator effect due to SSR with STATCOM in synchronous generator’. Proc. Int. Conf. Power Electronics (IICPE), IIT Delhi, India, 6–8 December 2012.
    12. 12)
      • 11. Zhu, C., Fan, L., Hu, M.: ‘Control and analysis of DFLG-based wind turbines in a series compensated network for SSR damping’. IEEE PES General Meeting, Providence, Rhode Island, 2010, pp. 16.
    13. 13)
      • 6. Murotani, K., Saito, O., Mukae, H.: ‘Suppression of self excited oscillations in series-compensated transmission lines by excitation control of synchronous machines’, IEEE Trans. Power Appar. Syst., 1975, PAS 94, pp. 17771791.
    14. 14)
      • 22. Kundur, P.: ‘Power system stability and control’ (McGraw Hill, West Patel Nagar, New Delhi, India, 1994).
    15. 15)
      • 1. Series compensation: Boosting transmission capacity’. ‘ Available at: https://library.e.abb.com/public/500e696d077796cf83257e0c0047d487/SC%20A02-0135E_E%20KorrI.pdf.
    16. 16)
      • 28. Gibbard, M.J., Pourbeik, P., Vowles, D.J.: ‘Small-signal stability, control and dynamic performance Of power systems’ (The University of Adelaide Press, Adelaide, South Australia, 2015).
    17. 17)
      • 23. Yang, L., Xu, Z., Ostergaard, J., et al: ‘Oscillatory stability and eigen value sensitivity analysis of a dflg wind turbine system’, IEEE Trans. Energy Convers., 2011, 26, (1), pp. 328339.
    18. 18)
      • 16. Faried, S.O., Onal, I., Rai, D., et al: ‘Utilizing DFLG-based wind farm fordamping sub synchronous resonance in nearby turbine generators’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 452458.
    19. 19)
      • 8. Mohammadpor, H.A., Ghaderi, A., Santi, E.: ‘Analysis of sub-synchronous resonance in doubly fed induction generator-based wind farm interfaced with gate-controlled series capacitor’, IET Gener. Transm. Distrib., 2014, 8, (12), pp. 19982011.
    20. 20)
      • 12. Mohammadpor, H.A., Santi, E.: ‘Subsynchronous resonance analysis in DFIG-based wind farms: mitigation methods-TCSC, GCSC and DFIG controllers part ii’. Energy Conversion Congress and Exposition (ECCE), 2014.
    21. 21)
      • 31. Ross, S.M.: ‘Introduction to probability models’ (Elsevier, Kidlington, Oxford, UK, 2010).
    22. 22)
      • 3. Hammad, A.E., El-Sadeki, M.: ‘Application of a thyristor controlled var compensator for damping of sub-synchronous oscillations in power system’, IEEE Trans. Power Appar. Syst., 1984, 103, (1), pp. 198212.
    23. 23)
      • 32. Sadikovic, R.: ‘Damping controller design for power system oscillations’, Technical Report, (ETH Zurich, Switzerland, 2004), http://www.eeh.ee.ethz.ch/psl.
    24. 24)
      • 2. Ramanujam, R.: ‘Power system stability dynamics analysis and simulation’ (PHI Learning Private Limited, New Delhi, India, 2010).
    25. 25)
      • 13. Ugalde Loo, C.E.: SSR in Power System- HVDC Doctoral Colloquium. ‘Available at: https://www.scribd.com/document/189470012/SSR-in-power-systems, accessed June 2010.
    26. 26)
      • 30. Linash, P.K., Pal, B.C.: ‘Selection of feedback signals for controlling dynamics in future power transmission line’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 14931501.
    27. 27)
      • 10. Fan, L., Zhu, C., Miao, Z., et al: ‘Modal analysis of dflg-based wind farm interfaced with a series-compensated network’, IEEE Trans. Energy Convers., 2011, 26, (4), pp. 10101020.
    28. 28)
      • 20. Shah, N.N., Joshi, S.R., Jadav, S.: ‘An application of 100 MW DFIG based wind model for damping oscillation in SMIB’. Proc. Int. Conf. IEEE Texas Power and Energy Conf. (TPEC), A&M University Texas, USA, 8–9 February 2018.
    29. 29)
      • 9. Fan, L., Miao, Z.: ‘Modeling and analysis of doubly fed induction generator wind energy systems’ (Elsevier, London Wall, London, UK, 2015).
    30. 30)
      • 26. Joshi, S.R., Cheriyan, E.P., Kulkarni, A.M.: ‘Output feedback SSR damping controller design based on modular discrete-time dynamic model of TCSC’, IET Gener. Transm. Distrib., 2009, 3, (6), pp. 561573.
    31. 31)
      • 25. Fan, L., Kavasseri, R., Miao, C., et al: ‘Modelling of dflg-based windfarms for ssr analysis’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 20732080.
    32. 32)
      • 27. Wang, H., Du, W.: ‘Analysis and damping control of power system low-frequency oscillation’ (Springer Science+Business Media, New York, USA, 2015).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0256
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0256
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading