access icon free VSG scheme under unbalanced conditions controlled by SMC

The presence of distributed generators (DGs) based on renewable energy is a fact in the electrical grid. However, DGs based on renewable resources such as photovoltaic panels and storage systems lack inertia, which is used by synchronous generators to compensate oscillations in the electrical grid. Thus, virtual inertia is introduced via a virtual synchronous generator (VSG) scheme. Although VSG is widely used, its robustness cannot be ensured since it employs proportional–integral–derivative-type (PID-type) controllers, which are sensitive to parameters variations. Furthermore, PID-type controllers are designed assuming balance conditions and the negative sequence components produced during unbalanced conditions are not considered. This paper proposes a robust VSG topology working under unbalanced conditions. A sliding mode control (SMC) algorithm named super-twisting (ST) is integrated into the control loop of VSG providing insensitivity to matched disturbances/uncertainties and finite-time convergence. Since the design of the ST algorithm considers the presence of negative-sequence components, it is not necessary a modification of the control loop before, during, or after the fault. The method to compute the ST control gains and the stability test using Lyapunov are provided. The VSG scheme is tested via simulations, where voltage sags are applied to generate the unbalanced conditions.

Inspec keywords: variable structure systems; synchronous generators; control system synthesis; three-term control; uncertain systems; machine control

Other keywords: PID-type controllers; virtual synchronous generator scheme; photovoltaic panels; sliding mode control algorithm; SMC; robust VSG topology; virtual inertia; unbalanced conditions; super-twisting; VSG scheme

Subjects: Control of electric power systems; Multivariable control systems; Synchronous machines; Control system analysis and synthesis methods

References

    1. 1)
      • 7. Li, B., Zhou, L., Yu, X., et al: ‘Improved power decoupling control strategy based on virtual synchronous generator’, IET Power Electron., 2017, 10, (4), pp. 462470.
    2. 2)
      • 4. Alipoor, J., Miura, Y., Ise, T.: ‘Power system stabilization using virtual synchronous generator with alternating moment of inertia’, IEEE J. Emerg. Sel. Top. Power Electron., 2015, 3, (2), pp. 451458.
    3. 3)
      • 40. Khalil, H.: ‘Nonlinear systems’ (Prentice-Hall, NJ, USA, 1996).
    4. 4)
      • 38. Ma, K., Chen, W., Liserre, M., et al: ‘Power controllability of a three-phase converter with an unbalanced ac source’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 15911604.
    5. 5)
      • 37. Vekić, M., Rapaić, M.R., Sekara, T.B., et al: ‘Multi-resonant observer PLL with real-time estimation of grid unbalances’, Int. J. Electr. Power Energy Syst., 2019, 108, pp. 5260.
    6. 6)
      • 41. Bacciotti, A., Rosier, L.: ‘Lyapunov functions and stability in control theory communications and control engineering (Springer, Berlin, 2001).
    7. 7)
      • 17. Primadianto, A., Lu, C.: ‘A review on distribution system state estimation’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 38753883.
    8. 8)
      • 29. Alsmadi, Y.M., Utkin, V., Haj Ahmed, M.A., et al: ‘Sliding mode control of power converters: dc/dc converters’, Int. J. Control, 2017, pp. 122.
    9. 9)
      • 25. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in ac microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    10. 10)
      • 30. Levant, A.: ‘Sliding order and sliding accuracy in sliding mode control’, Int. J. Control, 1993, 58, pp. 12471263.
    11. 11)
      • 33. Pati, A.K., Sahoo, N.C.: ‘Adaptive super-twisting sliding mode control for a three-phase single-stage grid-connected differential boost inverter based photovoltaic system’, ISA Trans., 2017, 69, pp. 296306.
    12. 12)
      • 27. Shtessel, Y., Edwars, C., Fridman, L., et al: ‘Sliding mode control and observation’ (Springer, New York, 2014).
    13. 13)
      • 34. Chalanga, A., Kamal, S., Fridman, L.M., et al: ‘Implementation of super-twisting control: super-twisting and higher-order sliding-mode observer-based approaches’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 36773685.
    14. 14)
      • 20. Shi, K., Ye, H., Xu, P., et al: ‘Low-voltage ride-through control strategy of virtual synchronous generator based on the analysis of excitation state’, IET Gener. Transm. Distrib., 2018, 12, (9), pp. 21652172.
    15. 15)
      • 12. Bollen, M.H.J.: ‘Understanding power quality problems: voltage sags and interruption’ (The Institute of Electrical and Electronics Engineers, Inc., Philadelphia, USA, 2000).
    16. 16)
      • 6. Wu, H., Ruan, X., Yang, D., et al: ‘Small-signal modeling and parameters design for virtual synchronous generators’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 42924303.
    17. 17)
      • 11. Camarillo-Penaranda, J.R., Ramos, G.: ‘Fault classification and voltage sag parameter computation using voltage ellipses’, IEEE Trans. Ind. Electron., 2019, 55, (1), pp. 9297.
    18. 18)
      • 3. Bevrani, H., Ise, T., Miura, Y.: ‘Virtual synchronous generators: a survey and new perspectives’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 244254.
    19. 19)
      • 8. Hirase, Y., Abe, K., Sugimoto, K., et al: ‘A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids’, Appl. Energy, 2018, 210, pp. 699710.
    20. 20)
      • 28. Hu, J., Shang, L., He, Y., et al: ‘Direct active and reactive power regulation of grid-connected dc/ac converters using sliding mode control approach’, IEEE Trans. Power Electron., 2011, 26, (1), pp. 210222.
    21. 21)
      • 32. Ornelas-Tellez, F., Rico, J.J., Espinosa Juarez, E., et al: ‘Optimal and robust control in dc microgrids’, IEEE Trans. Smart Grid, 2018, 9, (6), pp. 55435553.
    22. 22)
      • 39. Moreno, J.A., Osorio, M.: ‘A Lyapunov approach to second-order sliding mode controllers and observers’. Proc. IEEE Conf. Decision and Control, Cancun, Mexico, 2008, pp. 28562861.
    23. 23)
      • 18. Nanchian, S., Majumdar, A., Pal, B.C.: ‘Three-phase state estimation using hybrid particle swarm optimization’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 10351045.
    24. 24)
      • 31. Morfin, O.A., Ruiz Cruz, R., Loukianov, A.G., et al: ‘Torque controller of a doubly-fed induction generator impelled by a dc motor for wind system applications’, IET Renew. Power Gener., 2014, 8, (5), pp. 484497.
    25. 25)
      • 22. Zheng, T., Chen, L., Guo, Y., et al: ‘Flexible unbalanced control with peak current limitation for virtual synchronous generator under voltage sags’, J. Mod. Power Syst. Clean Energy, 2018, 6, (1), pp. 6172.
    26. 26)
      • 36. Schiffer, J., Zonetti, D., Ortega, R., et al: ‘A survey on modeling of microgrids: from fundamental physics to phasors and voltage sources’, Automatica, 2016, 74, pp. 135150.
    27. 27)
      • 1. Liu, J., Miura, Y., Ise, T.: ‘Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 36003611.
    28. 28)
      • 9. Chen, M., Xiao, X.: ‘Hierarchical frequency control strategy of hybrid droop/VSG-based islanded microgrids’, Electr. Power Syst. Res., 2018, 155, pp. 131143.
    29. 29)
      • 21. Zheng, T., Chen, L., Guo, Y., et al: ‘Comprehensive control strategy of virtual synchronous generator under unbalanced voltage conditions’, IET Gener. Transm. Distrib., 2018, 12, (7), pp. 16211630.
    30. 30)
      • 2. Driesen, J., Visscher, K.: ‘Virtual synchronous generators’. 2008 IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 2008, pp. 13.
    31. 31)
      • 14. Routtenberg, T., Xie, Y., Willett, R.M., et al: ‘PMU-based detection of imbalance in three-phase power systems’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 19661976.
    32. 32)
      • 35. Akagi, H., Ogasawara, S., Kim, H.: ‘The theory of instantaneous power in three-phase four-wire systems: a comprehensive approach’. Conf. Record of the 1999 IEEE Industry Applications Conf. 34th IAS Annual Meeting (Cat. No. 99CH36370), Phoenix, AZ, USA, 1999, vol. 1, pp. 431439.
    33. 33)
      • 5. Liu, J., Miura, Y., Bevrani, H., et al: ‘Enhanced virtual synchronous generator control for parallel inverters in microgrids’, IEEE Trans. Smart Grid, 2017, 8, (5), pp. 22682277.
    34. 34)
      • 24. Timbus, A., Liserre, M., Teodorescu, R., et al: ‘Evaluation of current controllers for distributed power generation systems’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 654664.
    35. 35)
      • 26. Wu, L., Mazumder, S.K., Kaynak, O.: ‘Sliding mode control and observation for complex industrial systems part i’, IEEE Trans. Ind. Electron., 2017, 64, (8), pp. 66806682.
    36. 36)
      • 13. Matavalam, A.R.R., Singhal, A., Ajjarapu, V.: ‘Monitoring long term voltage instability due to distribution transmission interaction using unbalanced µPMU measurements’, IEEE Trans. Smart Grid, 2019, p. 1.
    37. 37)
      • 10. Gayatri, M.T.L., Parimi, A.M., Kumar, A.V.P.: ‘A review of reactive power compensation techniques in microgrids’, Renew. Sustain. Energy Rev., 2018, 81, pp. 10301036.
    38. 38)
      • 23. Zheng, X., Wang, C., Pang, S.: ‘Injecting positive-sequence current virtual synchronous generator control under unbalanced grid’, IET Renew. Power Gener., 2019, 13, (1), pp. 165170.
    39. 39)
      • 19. Shi, K., Song, W., Xu, P., et al: ‘Low-voltage ride-through control strategy for a virtual synchronous generator based on smooth switching’, IEEE Access, 2018, 6, pp. 27032711.
    40. 40)
      • 16. Nateson, P., Ramachandran, M., Shanmugam, S.K.: ‘Design and implementation of hybrid Kalman filter for state estimation of power system under unbalanced loads’, J. Eng., 2019, 2019, (5), pp. 34423447.
    41. 41)
      • 15. Routtenberg, T., Concepcion, R., Tong, L.: ‘PMU-based detection of voltage imbalances with tolerance constraints’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 484494.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0245
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0245
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading