access icon free Voltage fluctuation mitigation: fast allocation and daily local control of DSTATCOMs to increase solar energy harvest

This study presents a methodology for reactive power compensation provided by distribution static synchronous compensators (DSTATCOMs) to mitigate the voltage fluctuation and increase the solar energy harvest via photovoltaic (PV) inverters accordingly in medium-voltage distribution systems. An approximate method that uses one power flow run with the base-case system is analytically developed to offer a fast estimation of the location and size of DSTATCOMs to enhance the local voltage controllability over sunshine hours. This study then presents daily local reactive power control, where the control signals are calculated based on instantaneous measurements of the voltage at each bus without requiring any communications. The control method involves estimating the amount of reactive power support by the installed DSTATCOMs to reduce the voltage fluctuation during daytime while PV inverters are fully used to harvest the solar energy. At night-time, the DSTATCOMs operate as a master in voltage-controlled mode with other PV inverters in load mode if required to minimise the energy loss while improving the voltage profile. The proposed method has been tested on a 69-bus distribution system with 1 min load and 1 s solar power profiles and validated using a repeated power flow-based exact solution.

Inspec keywords: energy harvesting; solar power stations; invertors; load flow control; static VAr compensators; reactive power control; power distribution control; photovoltaic power systems; power generation control; voltage control

Other keywords: local voltage controllability; distribution static synchronous compensators; medium-voltage distribution systems; solar energy harvest; control method; voltage profile; time 1.0 s; reactive power compensation; repeated power flow-based exact solution; daily local reactive power control; voltage fluctuation mitigation; energy loss; photovoltaic inverters; installed DSTATCOMs; PV inverters; reactive power support; fast allocation; daily local control; control signals; voltage-controlled mode; base-case system; time 1.0 min; reactive power sources; solar power profiles; 69-bus distribution system

Subjects: Other power apparatus and electric machines; Solar power stations and photovoltaic power systems; DC-AC power convertors (invertors); Distribution networks; Control of electric power systems; Power and energy control; Power system control; Energy harvesting

References

    1. 1)
      • 5. Turitsyn, K., Sulc, P., Backhaus, S., et al: ‘Options for control of reactive power by distributed photovoltaic generators’, Proc. IEEE, 2011, 99, (6), pp. 10631073, doi: 10.1109/JPROC.2011.2116750.
    2. 2)
      • 4. Richardson, P., Flynn, D., Keane, A.: ‘Optimal charging of electric vehicles in low-voltage distribution systems’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 268279, doi: 10.1109/TPWRS.2011.2158247.
    3. 3)
      • 9. Devi, S., Geethanjali, M.: ‘Optimal location and sizing determination of distributed generation and DSTATCOM using particle swarm optimization algorithm’, Int. J. Electr. Power Energy Syst., 2014, 62, pp. 562570, doi: https://doi.org/10.1016/j.ijepes.2014.05.015.
    4. 4)
      • 26. Sansawatt, T., Ochoa, L.F., Harrison, G. P.: ‘Smart decentralized control of DG for voltage and thermal constraint management’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 16371645, doi: 10.1109/TPWRS.2012.2186470.
    5. 5)
      • 21. Kabir, M.N., Mishra, Y., Ledwich, G., et al: ‘Coordinated control of grid-connected photovoltaic reactive power and battery energy storage systems to improve the voltage profile of a residential distribution feeder’, IEEE Trans. Ind. Inf., 2014, 10, (2), pp. 967977, doi: 10.1109/TII.2014.2299336.
    6. 6)
      • 18. Farivar, M., Neal, R., Clarke, C., et al: ‘Optimal inverter VAR control in distribution systems with high PV penetration’. Proc. IEEE Power Energy Society Generation Meeting, San Diego, CA, USA, 22–26 July 2012, doi: 10.1109/PESGM.2012.6345736.
    7. 7)
      • 28. Raghavendra, P., Gaonkar, D.N.: ‘Coordinated volt-var control: online voltage-profile estimation in smart distribution networks’, IEEE Ind. Appl. Mag., 2018, 24, (2), pp. 1422, doi: 10.1109/MIAS.2017.2740474.
    8. 8)
      • 17. Hsieh, S.C.: ‘Economic evaluation of the hybrid enhancing scheme with DSTATCOM and active power curtailment for PV penetration in Taipower distribution systems’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 19531961, doi: 10.1109/TIA.2014.2367138.
    9. 9)
      • 23. Samadi, A., Eriksson, R., Söder, L., et al: ‘Coordinated active power-dependent voltage regulation in distribution grids with PV systems’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 14541464, doi: 10.1109/TPWRD.2014.2298614.
    10. 10)
      • 15. Ghatak, S.R., Sannigrahi, S., Acharjee, P.: ‘Optimised planning of distribution network with photovoltaic system, battery storage, and DSTATCOM’, IET Renew. Power Gener., 2018, 12, (15), pp. 18231832, doi: 10.1049/iet-rpg.2018.5088.
    11. 11)
      • 12. Jazebi, S., Hosseinian, S. H., Vahidi, B.: ‘DSTATCOM allocation in distribution networks considering reconfiguration using differential evolution algorithm’, Energy Convers. Manage., 2011, 52, (7), pp. 27772783, doi: https://doi.org/10.1016/j.enconman.2011.01.006.
    12. 12)
      • 20. Furukakoi, M., Adewuyi, O.B., Matayoshi, H., et al: ‘Multi objective unit commitment with voltage stability and PV uncertainty’, Appl. Energy, 2018, 228, pp. 618623, doi: https://doi.org/10.1016/j.apenergy.2018.06.074.
    13. 13)
      • 14. Ghatak, S. R., Sannigrahi, S., Acharjee, P.: ‘Comparative performance analysis of DG and DSTATCOM using improved PSO based on success rate for deregulated environment’, IEEE Syst. J., 2018, 12, (3), pp. 27912802, doi: 10.1109/JSYST.2017.2691759.
    14. 14)
      • 16. Chen, C.S., Lin, C.H., Hsieh, W.L., et al: ‘Enhancement of PV penetration with DSTATCOM in Taipower distribution system’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 15601567, doi: 10.1109/TPWRS.2012.2226063.
    15. 15)
      • 3. Wang, Z., Chen, H., Wang, J., et al: ‘Inverter-less hybrid voltage/var control for distribution circuits with photovoltaic generators’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 27182728, doi: 10.1109/TSG.2014.2324569.
    16. 16)
      • 10. Devabalaji, K.R., Ravi, K.: ‘Optimal size and siting of multiple DG and DSTATCOM in radial distribution system using bacterial foraging optimization algorithm’, Ain Shams Eng. J., 2016, 7, (3), pp. 959971, doi: https://doi.org/10.1016/j.asej.2015.07.002.
    17. 17)
      • 35. Oahu Solar Measurement Grid’. Available at http://www.nrel.gov/midc/oahu_archive/, assessed July 2018.
    18. 18)
      • 36. Akhavan-Rezai, E., Shaaban, M. F., El-Saadany, E. F., et al: ‘Managing demand for plug-in electric vehicles in unbalanced LV systems with photovoltaics’, IEEE Trans. Ind. Inf., 2017, 13, (3), pp. 10571067, doi: 10.1109/TII.2017.2675481.
    19. 19)
      • 1. Global market outlook 2017–2021’. Available at http://www.solarpowereurope.org/reports/global-market-outlook-2017/, accessed December 2018.
    20. 20)
      • 31. Hung, D.Q., Mishra, Y., Walker, G.R.: ‘Reducing voltage fluctuations using DSTATCOMs and reactive power of PV inverters in a medium voltage distribution system’. Presented at Seventh IET Int. Conf. Renewable Power Generation DTU, Lyngby, Copenhagen, Denmark, 26–27 September 2018.
    21. 21)
      • 11. Yuvaraj, T., Ravi, K.: ‘Multi-objective simultaneous DG and DSTATCOM allocation in radial distribution networks using cuckoo searching algorithm’, Alexandria Eng. J., 2018, 57, (4), pp. 27292742, doi: https://doi.org/10.1016/j.aej.2018.01.001.
    22. 22)
      • 27. Trindade, F.C.L., Ferreira, T.S.D., Lopes, M.G., et al: ‘Mitigation of fast voltage variations during cloud transients in distribution systems with PV solar farms’, IEEE Trans. Power Deliv., 2017, 32, (2), pp. 921932, doi: 10.1109/TPWRD.2016.2562922.
    23. 23)
      • 22. Kabir, M.N., Mishra, Y., Ledwich, G., et al: ‘Improving voltage profile of residential distribution systems using rooftop PVs and battery energy storage systems’, Appl. Energy, 2014, 134, pp. 290300, doi: https://doi.org/10.1016/j.apenergy.2014.08.042.
    24. 24)
      • 33. Zimmerman, R.D., Murillo-Śanchez, C.E.: ‘MatPower user's manual’, 2018. Available at http://www.pserc.cornell.edu/matpower/manual.pdf, accessed May 2019.
    25. 25)
      • 8. Kumar, D., Samantaray, S. R.: ‘Implementation of multi-objective seeker-optimization-algorithm for optimal planning of primary distribution systems including DSTATCOM’, Int. J. Electr. Power Energy Syst., 2016, 77, pp. 439449, doi: https://doi.org/10.1016/j.ijepes.2015.11.047.
    26. 26)
      • 6. IEEE Std. 1547a-2014: ‘IEEE standard for interconnecting distributed resources with electric power systems – amendment 1 (amendment to IEEE Std. 1547–2003)’, 2014, pp. 116, doi: 10.1109/IEEESTD.2014.6818982.
    27. 27)
      • 24. Demirok, E., González, P.C., Frederiksen, K.H.B., et al: ‘Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids’, IEEE J. Photovolt., 2011, 1, (2), pp. 174182, doi: 10.1109/JPHOTOV.2011.2174821.
    28. 28)
      • 29. Yeh, H., Gayme, D.F., Low, S.H.: ‘Adaptive VAR control for distribution circuits with photovoltaic generators’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 16561663, doi: 10.1109/TPWRS.2012.2183151.
    29. 29)
      • 30. Zhang, Z., Ochoa, L.F., Valverde, G.: ‘A novel voltage sensitivity approach for the decentralized control of DG plants’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 15661576, doi: 10.1109/TPWRS.2017.2732443.
    30. 30)
      • 40. FAQ solar PV and electronic metering - Energex, Queensland’. Available at https://www.energex.com.au/__data/assets/pdf_file/0003/340599/FAQ-Solar-PV-and-Electronic-Meter-Form-8006.pdf, accessed July 2017.
    31. 31)
      • 13. Tolabi, H.B., Ali, M.H., Rizwan, M.: ‘Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach’, IEEE Trans. Sustain. Energy, 2015, 6, (1), pp. 210218, doi: 10.1109/TSTE.2014.2364230.
    32. 32)
      • 39. Nduka, O.S., Pal, B.C.: ‘Harmonic domain modeling of PV system for the assessment of grid integration impact’, IEEE Trans. Sustain. Energy, 2017, 8, (3), pp. 11541165.
    33. 33)
      • 32. Grainger, J.J, Stevenson, W.D.: ‘Power system analysis’ (McGraw-Hill, London, 1994).
    34. 34)
      • 38. Xiao, W., Moursi, M.S.E., Khan, O., et al: ‘Review of grid-tied converter topologies used in photovoltaic systems’, IET Renew. Power Gener., 2016, 10, (10), pp. 15431551.
    35. 35)
      • 2. Malekpour, A.R., Pahwa, A.: ‘A dynamic operational scheme for residential PV smart inverters’, IEEE Trans. Smart Grid, 2017, 8, (5), pp. 22582267, doi: 10.1109/TSG.2016.2521367.
    36. 36)
      • 25. Nousdilis, A.I., Christoforidis, G.C., Papagiannis, G.K.: ‘Active power management in low voltage networks with high photovoltaics penetration based on prosumers’ self-consumption’, Appl. Energy, 2018, 229, pp. 614624, doi: https://doi.org/10.1016/j.apenergy.2018.08.032.
    37. 37)
      • 19. Ji, H., Wang, C., Li, P., et al: ‘A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks’, Appl. Energy, 2018, 228, pp. 20242036, doi: https://doi.org/10.1016/j.apenergy.2018.07.065.
    38. 38)
      • 7. Taher, S. A., Afsari, S. A.: ‘Optimal location and sizing of DSTATCOM in distribution systems by immune algorithm’, Int. J. Electr. Power Energy Syst., 2014, 60, pp. 3444, doi: https://doi.org/10.1016/j.ijepes.2014.02.020.
    39. 39)
      • 41. Standard for connection of embedded generating systems (>30 kW to 1,500 kW) to a distributor's LV network, Energex, Queensland’. Available at https://www.energex.com.au/__data/assets/pdf_file/0009/493515/STNW1174-Connection-of-EG-Systems_30-kW-to-1500-kW_to-a-Distributors-Network.pdf, accessed September 2018.
    40. 40)
      • 37. Das, D.: ‘A fuzzy multiobjective approach for network reconfiguration of distribution systems’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 202209, doi: 10.1109/TPWRD.2005.852335.
    41. 41)
      • 34. eGauge502 Center’. Available at http://egauge502.egaug.es/, accessed July 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0223
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0223
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading