http://iet.metastore.ingenta.com
1887

access icon free Analysis of power system inertia estimation in high wind power plant integration scenarios

Loading full text...

Full text loading...

/deliver/fulltext/iet-rpg/13/15/IET-RPG.2019.0220.html;jsessionid=dpc13222h3jbr.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-rpg.2019.0220&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Babahajiani, P., Shafiee, Q., Bevrani, H.: ‘Intelligent demand response contribution in frequency control of multi-area power systems’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 12821291.
    2. 2)
      • 2. Cvetkovíc, M., Pan, K., López, C.D., et al: ‘Co-simulation aspects for energy systems with high penetration of distributed energy resources’. AEIT Int. Annual Conf., 2017, pp. 16.
    3. 3)
      • 3. Wang, X., Palazoglu, A., El Farra, N.H.: ‘Operational optimization and demand response of hybrid renewable energy systems’, Appl. Energy, 2015, 143, pp. 324335.
    4. 4)
      • 4. Teng, F., Mu, Y., Jia, H., et al: ‘Challenges on primary frequency control and potential solution from EVS in the future GB electricity system’, Appl. Energy, 2017, 194, pp. 353362.
    5. 5)
      • 5. Rodriguez, R.A., Becker, S., Andresen, G.B., et al: ‘Transmission needs across a fully renewable European power system’, Renew. Energy, 2014, 63, pp. 467476.
    6. 6)
      • 6. Zhang, W., Fang, K.: ‘Controlling active power of wind farms to participate in load frequency control of power systems’, IET Gener. Transm. Distrib., 2017, 11, (9), pp. 21942203.
    7. 7)
      • 7. Junyent Ferr, A., Pipelzadeh, Y., Green, T.C.: ‘Blending HVDC-link energy storage and offshore wind turbine inertia for fast frequency response’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 10591066.
    8. 8)
      • 8. Akhtar, Z., Chaudhuri, B., Hui, S.Y.R.: ‘Primary frequency control contribution from smart loads using reactive compensation’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 23562365.
    9. 9)
      • 9. Yang, S., Fang, J., Tang, Y., et al: ‘Synthetic-inertia-based modular multilevel converter frequency control for improved micro-grid frequency regulation’. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 51775184.
    10. 10)
      • 10. Dehghanpour, K., Afsharnia, S.: ‘Electrical demand side contribution to frequency control in power systems: a review on technical aspects’, Renew. Sustain. Energy Rev., 2015, 41, pp. 12671276.
    11. 11)
      • 11. Kim, Y.S., Kim, E.S., Moon, S.I.: ‘Frequency and voltage control strategy of standalone microgrids with high penetration of intermittent renewable generation systems’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 718728.
    12. 12)
      • 12. Nguyen, H.T., Yang, G., Nielsen, A.H., et al: ‘Combination of synchronous condenser and synthetic inertia for frequency stability enhancement in low inertia systems’, IEEE Trans. Sustain. Energy, 2018, 10, pp. 9971005.
    13. 13)
      • 13. Groß, D., Bolognani, S., Poolla, B.K., et al: ‘Increasing the resilience of low inertia power systems by virtual inertia and damping’. Bulk Power Systems Dynamics and Control Symp. (IREP), 2017.
    14. 14)
      • 14. Vokony, I.: ‘Effect of inertia deficit on power system stability-synthetic inertia concepts analysis’. 2017 Sixth Int. Youth Conf. Energy (IYCE), 2017, pp. 16.
    15. 15)
      • 15. Inoue, T., Taniguchi, H., Ikeguchi, Y., et al: ‘Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients’, IEEE Trans. Power Syst., 1997, 12, (1), pp. 136143.
    16. 16)
      • 16. Chassin, D.P., Huang, Z., Donnelly, M.K., et al: ‘Estimation of WECC system inertia using observed frequency transients’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 11901192.
    17. 17)
      • 17. Wall, P., Gonzalez Longatt, F., Terzija, V.: ‘Estimation of generator inertia available during a disturbance’. 2012 IEEE Power and Energy Society General Meeting, 2012, pp. 18.
    18. 18)
      • 18. Wall, P., Terzija, V.: ‘Simultaneous estimation of the time of disturbance and inertia in power systems’, IEEE Trans. Power Deliv, 2014, 29, (4), pp. 20182031.
    19. 19)
      • 19. Zografos, D., Ghandhari, M.: ‘Power system inertia estimation by approaching load power change after a disturbance’. 2017 IEEE Power & Energy Society General Meeting, 2017, pp. 15.
    20. 20)
      • 20. Tuttelberg, K., Kilter, J., Wilson, D.H., et al: ‘Estimation of power system inertia from ambient wide area measurements’, IEEE Trans. Power Syst., 2018, 33, pp. 72497257.
    21. 21)
      • 21. Zografos, D., Ghandhari, M., Eriksson, R.: ‘Power system inertia estimation: utilization of frequency and voltage response after a disturbance’, Electr. Power Syst. Res., 2018, 161, pp. 5260.
    22. 22)
      • 22. Fernández Guillamón, A., Villena Lapaz, J., Vigueras Rodríguez, A., et al: ‘An adaptive frequency strategy for variable speed wind turbines: application to high wind integration into power systems’, Energies, 2018, 11, (6), pp. 121.
    23. 23)
      • 23. Ulbig, A., Borsche, T.S., Andersson, G.: ‘Impact of low rotational inertia on power system stability and operation’, IFAC Proc. Volumes, 2014, 47, (3), pp. 72907297.
    24. 24)
      • 24. Uriarte, F.M., Smith, C., VanBroekhoven, S., et al: ‘Microgrid ramp rates and the inertial stability margin’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 32093216.
    25. 25)
      • 25. Tielens, P., Van Hertem, D.: ‘The relevance of inertia in power systems’, Renew. Sustain. Energy Rev., 2016, 55, pp. 9991009.
    26. 26)
      • 26. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and control’, vol. 7 (McGraw-Hill, New York, 1994).
    27. 27)
      • 27. De Almeida, R.G., Lopes, J.P.: ‘Participation of doubly fed induction wind generators in system frequency regulation’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 944950.
    28. 28)
      • 28. Anderson, P.M., Fouad, A.A.: ‘Power system control and stability’ (John Wiley & Sons, Inc., New Jersey, USA, 2008).
    29. 29)
      • 29. Dabur, P., Yadav, N.K., Tayal, V.K.: ‘MATLAB design and simulation of AGC and AVR for multi-area power system and demand side management’, Int. J. Comput. Electr. Eng., 2011, 3, (2), p. 259.
    30. 30)
      • 30. Kumar, S., Sharma, G., Singh, G., et al: ‘AGC and AVR of interconnected thermal power system while considering the effect of GRC's’, Int. J. Soft Comput. Eng. (IJSCE), 2012, 2, pp. 21172126.
    31. 31)
      • 31. Tielens, P., Van Hertem, D.: ‘Grid inertia and frequency control in power systems with high penetration of renewables’, Delft, The Netherlands, 2012.
    32. 32)
      • 32. Grainger, J.J., Stevenson, W.D.: ‘Power system analysis’ (McGraw-Hill, New York, USA, 1994).
    33. 33)
      • 33. Shahidehpour, M., Eremia, M., Toma, L.: ‘Modeling the main components of the classical power plants’, in Eremia, M., Shahidehpour, M. (eds.) ‘Handbook of electrical power system dynamics: modeling, stability, and control’ (Wiley-IEEE Press, USA, 2013), pp. 137178.
    34. 34)
      • 34. Spahic, E., Varma, D., Beck, G., et al: ‘Impact of reduced system inertia on stable power system operation and an overview of possible solutions’. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016, pp. 15.
    35. 35)
      • 35. Raisz, D., Musa, A., Ponci, F., et al: ‘Linear and uniform system dynamics of future converter-based power systems’. 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 2018, pp. 15.
    36. 36)
      • 36. Tofis, Y., Timotheou, S., Kyriakides, E.: ‘Minimal load shedding using the swing equation’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 24662467.
    37. 37)
      • 37. Suh, J., Yoon, D.H., Cho, Y.S., et al: ‘Flexible frequency operation strategy of power system with high renewable penetration’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 192199.
    38. 38)
      • 38. Yazdi, S.S.H., Milimonfared, J., Fathi, S.H., et al: ‘Analytical modeling and inertia estimation of VSG-controlled type 4 WTGS: power system frequency response investigation’, Int. J. Electr. Power Energy Syst., 2019, 107, pp. 446461.
    39. 39)
      • 39. Li, W., Du, P., Lu, N.: ‘Design of a new primary frequency control market for hosting frequency response reserve offers from both generators and loads’, IEEE Trans. Smart Grid, 2017, 9, pp. 48834892.
    40. 40)
      • 40. Ochoa, D., Martinez, S.: ‘Fast-frequency response provided by DFIG-wind turbines and its impact on the grid’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 40024011.
    41. 41)
      • 41. Shah, R., Mithulananthan, N., Bansal, R.C., et al: ‘A review of key power system stability challenges for large-scale PV integration’, Renew. Sustain. Energy Rev., 2015, 41, (Supplement C), pp. 14231436.
    42. 42)
      • 42. Muyeen, S., Takahashi, R., Murata, T., et al: ‘A variable speed wind turbine control strategy to meet wind farm grid code requirements’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 331340.
    43. 43)
      • 43. Mohamed, T.H., Morel, J., Bevrani, H., et al: ‘Model predictive based load frequency control_design concerning wind turbines’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 859867.
    44. 44)
      • 44. Zhao, J., Lyu, X., Fu, Y., et al: ‘Coordinated microgrid frequency regulation based on DFIG variable coefficient using virtual inertia and primary frequency control’, IEEE Trans. Energy Convers., 2016, 31, (3), pp. 833845.
    45. 45)
      • 45. Hosseinipour, A., Hojabri, H.: ‘Virtual inertia control of PV systems for dynamic performance and damping enhancement of dc microgrids with constant power loads’, IET Renew. Power Gener., 2017, 12, (4), pp. 430438.
    46. 46)
      • 46. Tielens, P.: ‘Operation and control of power systems with low synchronous inertia’. KU Leuven, 2017.
    47. 47)
      • 47. Du, P., Matevosyan, J.: ‘Forecast system inertia condition and its impact to integrate more renewables’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 15311533.
    48. 48)
      • 48. Yingcheng, X., Nengling, T.: ‘Review of contribution to frequency control through variable speed wind turbine’, Renew. Energy, 2011, 36, (6), pp. 16711677.
    49. 49)
      • 49. Ulbig, A., Borsche, T.S., Andersson, G.: ‘Analyzing rotational inertia, grid topology and their role for power system stability’, IFAC-PapersOnLine, 2015, 48, (30), pp. 541547.
    50. 50)
      • 50. Nedd, M., Booth, C., Bell, K.: ‘Potential solutions to the challenges of low inertia power systems with a case study concerning synchronous condensers’. 2017 52nd Int. Universities Power Engineering Conf. (UPEC), Heraklion, Greece, 2017, pp. 16.
    51. 51)
      • 51. You, R., Barahona, B., Chai, J., et al: ‘Improvement of grid frequency dynamic characteristic with novel wind turbine based on electromagnetic coupler’, Renew. Energy, 2017, 113, pp. 813821.
    52. 52)
      • 52. Aho, J., Buckspan, A., Laks, J., et al: ‘A tutorial of wind turbine control for supporting grid frequency through active power control’. 2012 American Control Conf. (ACC), Montreal, QC, Canada, 2012, pp. 31203131.
    53. 53)
      • 53. Kayikçi, M., Milanovic, J.V.: ‘Dynamic contribution of DFIG-based wind plants to system frequency disturbances’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 859867.
    54. 54)
      • 54. Toulabi, M., Bahrami, S., Ranjbar, A.M.: ‘An input-to-state stability approach to inertial frequency response analysis of doubly-fed induction generator-based wind turbines’, IEEE Trans. Energy Convers., 2017, 32, (4), pp. 14181431.
    55. 55)
      • 55. Tamrakar, U., Shrestha, D., Maharjan, M., et al: ‘Virtual inertia: current trends and future directions’, Appl. Sci., 2017, 7, (7), p. 654.
    56. 56)
      • 56. Sun, Y.Z., Zhang, Z.S., Li, G.J., et al: ‘Review on frequency control of power systems with wind power penetration’. 2010 Int. Conf. Power System Technology (POWERCON), Hangzhou, China, 2010, pp. 18.
    57. 57)
      • 57. Attya, A., Dominguez Garcia, J., Anaya Lara, O.: ‘A review on frequency support provision by wind power plants: current and future challenges’, Renew. Sustain. Energy Rev., 2018, 81, pp. 20712087.
    58. 58)
      • 58. Wang, D., Gao, X., Meng, K., et al: ‘Utilisation of kinetic energy from wind turbine for grid connections: a review paper’, IET Renew. Power Gener., 2018, 12, (6), pp. 615624.
    59. 59)
      • 59. Ziping, W., Wenzhong, G., Tianqi, G., et al: ‘State-of-the-art review on frequency response of wind power plants in power systems’, J. Mod. Power Syst. Clean Energy, 2018, 6, (1), pp. 116.
    60. 60)
      • 60. Morren, J.: ‘Grid support by power electronic converters of distributed generation units’. TU Delft, 2006.
    61. 61)
      • 61. Tielens, P., Van Hertem, D.: ‘Receding horizon control of wind power to provide frequency regulation’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 26632672.
    62. 62)
      • 62. Muñoz Benavente, I., Hansen, A.D., Gómez Lázaro, E., et al: ‘Impact of combined demand-response and wind power plant participation in frequency control for multi-area power systems’, Energies, 2019, 12, (9), pp. 16871706.
    63. 63)
      • 63. Miller, N.W., Sanchez Gasca, J.J., Price, W.W., et al: ‘Dynamic modeling of GE 1.5 and 3.6 mW wind turbine-generators for stability simulations’. 2003 IEEE Power Engineering Society General Meeting, Toronto, Ont., Canada, 2003, vol. 3, pp. 19771983.
    64. 64)
      • 64. Ullah, N.R., Thiringer, T., Karlsson, D.: ‘Temporary primary frequency control support by variable speed wind turbines – potential and applications’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 601612.
    65. 65)
      • 65. Clark, K., Miller, N.W., Sanchez Gasca, J.J.: ‘Modeling of GE wind turbine-generators for grid studies’, GE Energy, 2010, 4, pp. 08858950.
    66. 66)
      • 66. Díaz González, F., Hau, M., Sumper, A., et al: ‘Participation of wind power plants in system frequency control: review of grid code requirements and control methods’, Renew. Sustain. Energy Rev., 2014, 34, pp. 551564.
    67. 67)
      • 67. Alomoush, M.I.: ‘Load frequency control and automatic generation control using fractional-order controllers’, Electr. Eng., 2010, 91, (7), pp. 357368.
    68. 68)
      • 68. Dai, J., Phulpin, Y., Sarlette, A., et al: ‘Coordinated primary frequency control among non-synchronous systems connected by a multi-terminal high-voltage direct current grid’, IET Gener. Transm. Distrib., 2012, 6, (2), pp. 99108.
    69. 69)
      • 69. Simpson Porco, J.W., Shafiee, Q., Dörfler, F., et al: ‘Secondary frequency and voltage control of islanded microgrids via distributed averaging’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 70257038.
    70. 70)
      • 70. Dreidy, M., Mokhlis, H., Mekhilef, S.: ‘Inertia response and frequency control techniques for renewable energy sources: a review’, Renew. Sustain. Energy Rev., 2017, 69, pp. 144155.
    71. 71)
      • 71. Tarnowski, G.C., Kjar, P.C., Sorensen, P.E., et al: ‘Variable speed wind turbines capability for temporary over-production’. 2009 PES'09. IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 2009, pp. 17.
    72. 72)
      • 72. Keung, P., Li, P., Banakar, H., et al: ‘Kinetic energy of wind-turbine generators for system frequency support’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 279287.
    73. 73)
      • 73. Chang Chien, L.R., Lin, W.T., Yin, Y.C.: ‘Enhancing frequency response control by DFIGs in the high wind penetrated power systems’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 710718.
    74. 74)
      • 74. Itani, S.E., Annakkage, U.D., Joos, G.: ‘Short-term frequency support utilizing inertial response of DFIG wind turbines’. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 18.
    75. 75)
      • 75. Hansen, A.D., Altin, M., Margaris, I.D., et al: ‘Analysis of the short-term overproduction capability of variable speed wind turbines’, Renew. Energy, 2014, 68, pp. 326336.
    76. 76)
      • 76. Kang, M., Lee, J., Hur, K., et al: ‘Stepwise inertial control of a doubly-fed induction generator to prevent a second frequency dip’, J. Electr. Eng. Technol., 2015, 10, (6), pp. 22212227.
    77. 77)
      • 77. Hafiz, F., Abdennour, A.: ‘Optimal use of kinetic energy for the inertial support from variable speed wind turbines’, Renew. Energy, 2015, 80, pp. 629643.
    78. 78)
      • 78. Kang, M., Kim, K., Muljadi, E., et al: ‘Frequency control support of a doubly-fed induction generator based on the torque limit’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 45754583.
    79. 79)
      • 79. Su, C., Chen, Z.: ‘Influence of wind plant ancillary frequency control on system small signal stability’. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 2012, pp. 18.
    80. 80)
      • 80. Zhang, Z.S., Sun, Y.Z., Lin, J., et al: ‘Coordinated frequency regulation by doubly fed induction generator-based wind power plants’, IET Renew. Power Gener., 2012, 6, (1), pp. 3847.
    81. 81)
      • 81. Zhang, Z., Wang, Y., Li, H., et al: ‘Comparison of inertia control methods for DFIG-based wind turbines’. 2013 IEEE ECCE Asia Downunder (ECCE Asia), Melbourne, VIC, Australia, 2013, pp. 960964.
    82. 82)
      • 82. You, R., Barahona, B., Chai, J., et al: ‘Frequency support capability of variable speed wind turbine based on electromagnetic coupler’, Renew. Energy, 2015, 74, pp. 681688.
    83. 83)
      • 83. Hwang, M., Muljadi, E., Park, J.W., et al: ‘Dynamic droop-based inertial control of a doubly-fed induction generator’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 924933.
    84. 84)
      • 84. Bonfiglio, A., Gonzalez Longatt, F., Procopio, R.: ‘Integrated inertial and droop frequency controller for variable speed wind generators’, WSEAS Trans. Environ. Dev., 2016, 12, (18), pp. 167177.
    85. 85)
      • 85. Persson, M., Chen, P.: ‘Frequency control by variable speed wind turbines in islanded power systems with various generation mix’, IET Renew. Power Gener., 2016, 11, (8), pp. 11011109.
    86. 86)
      • 86. Ye, H., Liu, Y., Pei, W., et al: ‘Efficient droop-based primary frequency control from variable-speed wind turbines and energy storage systems’. 2017 IEEE Transportation Electrification Conf. Expo, Asia-Pacific (ITEC Asia-Pacific), Harbin, China, 2017, pp. 15.
    87. 87)
      • 87. Jahan, E., Hazari, M.R., Muyeen, S., et al: ‘Primary frequency regulation of the hybrid power system by deloaded PMSG based offshore wind farm using centralised droop controller’, J. Eng., 2019, 2019, pp. 49504954.
    88. 88)
      • 88. Wilches Bernal, F., Chow, J.H., Sanchez Gasca, J.J.: ‘A fundamental study of applying wind turbines for power system frequency control’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 14961505.
    89. 89)
      • 89. Margaris, I.D., Papathanassiou, S.A., Hatziargyriou, N.D., et al: ‘Frequency control in autonomous power systems with high wind power penetration’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 189199.
    90. 90)
      • 90. Ye, H., Pei, W., Qi, Z.: ‘Analytical modeling of inertial and droop responses from a wind farm for short-term frequency regulation in power systems’, IEEE Trans. Power Syst., 2015, 31, (5), pp. 34143423.
    91. 91)
      • 91. Abo Al Ez, K.M., Tzoneva, R.: ‘Active power control (APC) of PMSG wind farm using emulated inertia and droop control’. 2016 Int. Conf. the Industrial and Commercial Use of Energy (ICUE), Cape Town, South Africa, 2016, pp. 140147.
    92. 92)
      • 92. Van de Vyver, J., De Kooning, J.D., Meersman, B., et al: ‘Droop control as an alternative inertial response strategy for the synthetic inertia on wind turbines’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 11291138.
    93. 93)
      • 93. Liu, T., Pan, W., Quan, R., et al: ‘A variable droop frequency control strategy for wind farms that considers optimal rotor kinetic energy’, IEEE Access, 2019, 7, pp. 6863668645.
    94. 94)
      • 94. Fernández Guillamón, A., Vigueras Rodríguez, A., Gómez Lázaro, E., et al: ‘Fast power reserve emulation strategy for VSWT supporting frequency control in multi-area power systems’, Energies, 2018, 11, (10), p. 2775.
    95. 95)
      • 95. Yang, L., Xu, Z., Ostergaard, J., et al: ‘Advanced control strategy of DFIG wind turbines for power system fault ride through’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 713722.
    96. 96)
      • 96. Arani, M.F.M., El Saadany, E.F.: ‘Implementing virtual inertia in DFIG-based wind power generation’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 13731384.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0220
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0220
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address