access icon free Maiden coordinated load frequency control strategy for ST-AWEC-GEC-BDDG-based independent three-area interconnected microgrid system with the combined effect of diverse energy storage and DC link using BOA-optimised PFOID controller

This work presents a maiden approach of coordinated frequency control of novel solar tower (ST)-Archimedes wave energy conversion (AWEC)-geothermal energy conversion (GEC)-biodiesel driven generator (BDDG)-energy storage (ES) units and direct current (DC) links based independent three-area interconnected microgrid system (ImGS). A recent metaheuristic technique, named butterfly optimisation algorithm (BOA) is applied to obtain the optimal gains of the controllers employed with the ImGS and system participation factors. The dynamic performance of proportional–integral derivative (PID), PID with filter (PIDN), proportional–fractional-order integral derivative (PFOID) controllers with their gains tuned by different algorithms such as particle swarm optimisation (PSO), firefly algorithm (FA), whale optimisation algorithm (WOA), and BOA have been compared. Further, the effect of ES units and DC links in all the areas is analysed first time in ImGS. The results have established the superiority of the BOA-based PFOID controllers under different real-world scenarios in terms of frequency deviation, tie-line power, and objective functions. Finally, rigorous sensitivity analysis has been conducted to evaluate the superiority of BOA-optimised PFOID controller towards preserving system stability of ImGS with ±25% change in synchronising tie-line coefficients and bias values, and +20% change in loading condition without resetting the nominal condition gain values.

Inspec keywords: three-term control; power generation control; distributed power generation; power system interconnection; AC generators; solar power stations; wave power generation; particle swarm optimisation; geothermal power stations; energy storage; optimisation; poles and towers; load regulation; power system stability; frequency control; sensitivity analysis; biofuel

Other keywords: proportional–fractional-order integral derivative controllers; load frequency control strategy; PID with filter; novel solar tower-Archimedes wave energy conversion-geothermal energy conversion-biodiesel driven generator-energy storage units; ST-AWEC-GEC-BDDG-based independent three-area interconnected microgrid system; coordinated frequency control; diverse energy storage; sensitivity analysis; tie-line power; bias values; direct current link-based independent three-area interconnected microgrid system; firefly algorithm; system participation factors; system stability; DC links; dynamic performance; proportional–integral derivative control; whale optimisation algorithm; ES unit effect; frequency deviation; butterfly optimisation algorithm; metaheuristic technique; particle swarm optimisation; tie-line coefficient synchronization; BOA-optimised PFOID controller; objective functions; ImGS; PIDN

Subjects: Wave power; Geothermal power stations and plants; Optimisation techniques; Control of electric power systems; Distributed power generation; Power system control; Solar power stations and photovoltaic power systems; Power line supports, insulators and connectors; Frequency control; Optimisation techniques; Power system management, operation and economics; Voltage control; a.c. machines

References

    1. 1)
      • 9. Ei-Fergany, A.A., Ei-Hameed, A.M.: ‘Efficient frequency controllers for autonomous two-area hybrid microgrid system using social-spider optimizer’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 637648.
    2. 2)
      • 15. Zamani, A., Barakati, S.M., Yousofi-Darmian, S.: ‘Design of a fractional order PID controller using GBMO algorithm for load–frequency control with governor saturation consideration’, ISA Trans., 2016, 64, pp. 5666.
    3. 3)
      • 10. Xing, L., Wang, J., Dooner, M., et al: ‘Overview of current development in electrical energy storage technologies and the application potential in power system operation’, Appl. Energy, 2015, 137, pp. 511536.
    4. 4)
      • 22. Ranjan, S., Das, D.C., Behera, S.: ‘Parabolic trough solar–thermal–wind–diesel isolated hybrid power system: active power/frequency control analysis’, IET Renew. Power Gener., 2018, 12, (16), pp. 18931903.
    5. 5)
      • 20. Tungadio, D.H., Bansal, R.C., Siti, M.W.: ‘Optimal control of active power of two micro-grids interconnected with two AC tie-lines’, Electr. Power Compon. Syst., 2017, 45, (19), pp. 21882199.
    6. 6)
      • 30. Chidambaram, A.I., Parasmasivam, B.: ‘Control performance standards based load frequency controller coordinating redox flow batteries coordinate with interline power flow controller’, Int. J. Power Sources, 2012, 219, pp. 292304.
    7. 7)
      • 27. Hasanien, M.H.: ‘Whale optimisation algorithm for automatic generation control of interconnected modern power systems including renewable energy sources’, IET Gener. Transm. Distrib., 2018, 12, (3), pp. 607614.
    8. 8)
      • 2. Yoo, J.H., Nguyen, T.-T., Kim, H.-M.: ‘Multi-frequency control in a stand-alone multi microgrid system using a back-to-back converter’, Energies, 2017, 10, (6), p. 822.
    9. 9)
      • 28. Elgard, O.I.: ‘Electric energy system theory: an introduction’ (Tata McGraw-Hill, New Delhi, 1983, 2nd edn.).
    10. 10)
      • 3. Ruiz-Cortes, M., Gonzalez-Romera, E., Lopes, R.A., et al: ‘Optimal charge/discharge scheduling of batteries in microgrids of prosumers’, IEEE Trans. Energy Convers., 2019, 34, (1), pp. 468477, doi: i10.1109/TEC.2018.2878351.
    11. 11)
      • 21. Lal, D.K., Barisal, A.K., Tripathy, M.: ‘Load frequency control of multi area interconnected microgrid power system using grasshopper optimization algorithm optimized fuzzy PID controller’. Recent Advances on Engineering, Technology and Computational Sciences (RAETCS), Allahabad, India, 6–8 February 2018, pp. 16.
    12. 12)
      • 17. Barisal, A.K.: ‘Comparative performance analysis of teaching learning based optimization for automatic load frequency control of multi-source power system’, Int. J. Electr. Power Energy Syst., 2015, 66, pp. 6777.
    13. 13)
      • 25. Ramos, C.D.K.: ‘Model and control of solar tower for energy production’. Master of Science Dissertation, Instituto Superior Tecnico, 2015.
    14. 14)
      • 12. Goya, T., Omine, E., Kinjyo, Y., et al: ‘Frequency control in isolated island by using parallel operated battery systems applying H∞ control theory based on droop characteristics’, IET Renew. Power Gener., 2011, 5, (2), pp. 160166.
    15. 15)
      • 23. Latif, A., Pramanik, A., Das, D.C., et al: ‘Plug in hybrid vehicle-wind-diesel autonomous hybrid power system: frequency control using FA and CSA optimized controller’, Int. J. Syst. Assur. Eng. Manag., 2018, 9, (5), pp. 11471158.
    16. 16)
      • 33. Wang, H., Zeng, G., Dai, Y., et al: ‘Design of fractional order frequency controller for an islanded microgrid: a multi-objective external optimization method’, Energies, 2017, 10, (10), p. 1502.
    17. 17)
      • 26. Ramos, C.D.K.: ‘Model and control of solar tower for energy production’. Available at https://pdfs.semanticscholar.org/bfa0/2dbffdcc098e71f4d9edd1574da2c83ae047.pdf, 2015.
    18. 18)
      • 14. Mohamed, T.H., Shabib, G., Hossam, A.: ‘Distributed load frequency control in an interconnected power system using ecological technique and coefficient diagram method’, Int. J. Electr. Power Energy Syst., 2016, 82, pp. 496507.
    19. 19)
      • 31. Ponnusamya, M., Banakara, B., Dash, S.S., et al: ‘Design of integral controller for load frequency control of static synchronous series compensator and capacitive energy source based multi area system consisting of diverse sources of generation employing imperialistic compensation algorithm’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 863871.
    20. 20)
      • 32. Deng, Z., Cao, H., Li, X., et al: ‘Generalized predictive control for fractional order dynamic model of solid oxide fuel cell output power’, J. Power Sources, 2010, 195, pp. 80978103.
    21. 21)
      • 24. Arora, S., Singh, S.: ‘Butterfly optimization algorithm: a novel approach for global optimization’, Soft Comput., 2019, 23, (3), pp. 715734.
    22. 22)
      • 11. Ray, P.K., Mohanty, S.R., Kishor, N.: ‘Proportional–integral controller based small-signal analysis of hybrid distributed generation systems’, Energy Convers. Manage., 2011, 52, (4), pp. 19431954.
    23. 23)
      • 7. Hasanien, H.M.: ‘Gravitational search algorithm-based optimal control of Archimedes wave swing-based wave energy conversion system supplying a DC microgrid under uncertain dynamics’, IET Renew. Power Gener., 2017, 11, (6), pp. 763770.
    24. 24)
      • 29. Barik, A.K., Das, D.C.: ‘Expeditious frequency control of solar photobiotic/biogas/biodiesel generator based isolated renewable microgrid using Grasshopper Optimisation Algorithm’, IET Renew. Power Gener., 2018, 12, (14), pp. 16591667.
    25. 25)
      • 8. Geothermal power database’, Available at: https://www.geothermal-energy.org/explore/our-databases/geothermal-power-database/#electricity-generation-by-country, 2018 by International Geothermal Association (IGA).
    26. 26)
      • 5. Das, D.C., Sinha, N., Roy, A.K.: ‘Automatic generation control of an organic rankine cycle solar–thermal/wind–diesel hybrid energy system’, Energy Technol., 2014, 2, (8), pp. 721731.
    27. 27)
      • 6. Global review of solar tower technology’, available at http://www.seriius.org/pdfs/global-review-solar-tower-technology.pdf, published on August 2014.
    28. 28)
      • 13. Mallesham, G., Mishra, S., Jha, A.N.: ‘Ziegler–Nichols based controller parameters tuning for load frequency control in a microgrid’. Int. Conf. on Energy, Automation, and Signal (ICEAS), Bhubaneswar, Odisha, India, December 2011, pp. 18.
    29. 29)
      • 19. Milano, F., Dorfler, F., Hug, G., et al: ‘Foundations and challenges of low-inertia systems’. 2018 Power Systems Computation Conf. (PSCC), Dublin, Ireland, 11–15 June 2018, pp. 125.
    30. 30)
      • 16. Ibraheem, N., Bhatti, T.S.: ‘AGC of two area power system interconnected by AC/DC links with diverse sources in each area’, Int. J. Electr. Power Energy Syst., 2014, 55, pp. 297304.
    31. 31)
      • 1. Hirsch, A., Parag, Y., Guerrero, J.: ‘Microgrids: a review of technologies, key drivers, and outstanding issues’, Renew. Sust. Energy Rev., 2018, 90, pp. 402411.
    32. 32)
      • 18. Barisal, A.K.: ‘Improved PSO based automatic generation control of muti-source nonlinear power system interconnected by AC-DC links’, Cogent Eng., 2018, 5, (1), pp. 120.
    33. 33)
      • 4. Das, D.C., Roy, A.K., Sinha, N.: ‘GA based frequency controller for solar thermal–diesel–wind hybrid energy generation/energy storage system’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 262279.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0199
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0199
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading