access icon free PV module behaviour on the substring level under real conditions monitored by junction box electronic device Jubomer

Understanding the degradation of a photovoltaic (PV) system is crucial for predicting the behaviour of a PV system or acting quickly in case of strong PV module degradation. A novel concept with Wi-Fi devices for monitoring the substring voltages of PV modules is presented and case studies of PV modules' substring voltages during operation of the PV system are reported on. A new electronic device called Jubomer was custom developed to fit into the junction box of a PV module and to measure the voltages of each module substring. The analysis of substring voltages shows that this methodology can reveal problematic modules without conducting a comprehensive testing procedure on disconnected PV modules. The results of the voltage measurements are also linked with the detailed analysis of a PV module using an electroluminescence imaging technique, which verifies the proposed concept.

Inspec keywords: condition monitoring; photovoltaic power systems; electroluminescence; solar cell arrays; wireless LAN

Other keywords: electroluminescence imaging technique; voltage measurement; photovoltaic system; junction box electronic device Jubomer; Wi-Fi devices; condition monitoring; PV module degradation

Subjects: Photoelectric conversion; solar cells and arrays; Solar cells and arrays; Computer communications; Solar power stations and photovoltaic power systems

References

    1. 1)
      • 7. Li, X.Y.: ‘Degradation analysis of photovoltaic modules based on operational data: effects of seasonal pattern and sensor drifting’, IOP Conf. Ser. Earth Environ. Sci., 2016, 40, (1), p. 012063.
    2. 2)
      • 4. Bauer, J., Naumann, V., Großer, S., et al: ‘On the mechanism of potential-induced degradation in crystalline silicon solar cells’, Phys. Status Solidi RRL – Rapid Res. Lett., 2012, 6, (8), pp. 331333.
    3. 3)
      • 26. Bedrich, K., Bokalič, M., Bliss, M., et al: ‘Electroluminescence imaging of PV devices: advanced Vignetting calibration’, IEEE J. Photovolt., 2018, 8, (5), pp. 12971304.
    4. 4)
      • 18. Doutreloigne, J., Bauwens, P.: ‘Integrated switch for substring reconfiguration to optimize module power under partial shading’. 31st European Photovoltaic Solar Energy Conf. Exhibition, Hamburg, Germany, 2015, pp. 142145.
    5. 5)
      • 17. Merz, R., Czarnecki, T., Neumann, A., et al: ‘Substring-MPPT for 4-terminal 3-substring modules’. 35th European Photovoltaic Solar Energy Conf. Exhibition, Brussels, Belgium, 2018, pp. 13931395.
    6. 6)
      • 23. ‘ET Solar - Cell optimizer module - Datasheet’, 2016.
    7. 7)
      • 24. Kurnik, J., Jankovec, M., Brecl, K., et al: ‘Development of outdoor photovoltaic module monitoring system’, Inf. MIDEM, 2008, 38, (2), pp. 7580.
    8. 8)
      • 15. Friesen, T., Chianese, D., Realini, A., et al: ‘TISO 10 kw: 30 years experience with a PV plant’. 27th European Photovoltaic Solar Energy Conf. and Exhibition, Frankfurt, Germany, 2012, pp. 31253131.
    9. 9)
      • 14. Köntges, M., Kurtz, S., Packard, C., et al: ‘Performance and reliability of photovoltaic systems’ (International Energy Agency, Photovoltaic Power Systems Programme, France, 2014).
    10. 10)
      • 8. Pan, R., Kuitche, J., Tamizhmani, G.: ‘Degradation analysis of solar photovoltaic modules: influence of environmental factor’, Proc. of Annual Reliability and Maintainability Symp., Frankfurt, Germany, 2011, pp. 15.
    11. 11)
      • 11. Oreski, G., Eder, A., Neumaier, L., et al: ‘Concepts for PV modules optimized for different climatic conditions: backsheets and encapsulants’. 27th Int. Photovoltaic Science and Engineering Conf., Shiga, Japan, 2014.
    12. 12)
      • 1. Jäger-Waldau, A.: ‘Snapshot of photovoltaics − February 2018’, EPJ Photovolt., 2018, 9, p. 6.
    13. 13)
      • 27. Bokalic, M., Topic, M.: ‘Spatially resolved characterization in thin-film photovoltaics’ (Springer International Publishing, Berlin, Germany, 2015).
    14. 14)
      • 13. Jankovec, M., Galliano, F., Annigoni, E., et al: ‘In-situ monitoring of moisture ingress in PV modules using digital humidity sensors’, IEEE J. Photovolt., 2016, 6, (5), pp. 11521159.
    15. 15)
      • 6. Sánchez-Friera, P., Piliougine, M., Peláez, J., et al: ‘Analysis of degradation mechanisms of crystalline silicon PV modules after 12 years of operation in Southern Europe’, Prog. Photovolt. Res. Appl., 2011, 19, (6), pp. 658666.
    16. 16)
      • 29. Köntges, M., Kunze, I., Kajari-Schröder, S., et al: ‘The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks’, Sol. Energy Mater. Sol. Cells, 2011, 95, (4), pp. 11311137.
    17. 17)
      • 21. ‘Pika Energy PV Link Sub-string Optimizer, S2501’. Available at: https://www.civicsolar.com/product/pika-energy-sub-array-pv-optimizer-s2501, accessed June 2019.
    18. 18)
      • 19. Poon, J., Jain, P., Spanos, C., et al: ‘Photovoltaic condition monitoring using real-time adaptive parameter identification’. IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 2017, pp. 11191124.
    19. 19)
      • 16. Maxim Integrated Products: ‘Solar cell optimization: cutting costs and driving performance’ inManufacturers notes, 2015.
    20. 20)
      • 20. Kim, K.A., Seo, G., Cho, B., et al: ‘Photovoltaic hot-spot detection for solar panel substrings using AC parameter characterization’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 11211130.
    21. 21)
      • 5. Wu, D., Zhu, J., Betts, T.R., et al: ‘PV module degradation mechanisms under different environmental stress factors’, ‘, 8th Photovoltaic Science Application and Technology Conf. (PVSAT-8), Northumbria University, Abingdon, United Kingdom, 2012, pp. 177180.
    22. 22)
      • 28. Jankovec, M., Topic, M.: ‘Intercomparison of temperature sensors for outdoor monitoring of photovoltaic modules’, J. Sol. Energy Eng., 2013, 135, (3), p. 031012.
    23. 23)
      • 12. Graedel, T.E.: ‘Corrosion mechanisms for silver exposed to the atmosphere’, J. Electrochem. Soc., 1992, 139, (7), pp. 19631970.
    24. 24)
      • 22. Vinnikov, D., Chub, A., Liivik, E., et al: ‘Solar optiverter – a novel hybrid approach to the photovoltaic module level power electronics’, IEEE Trans. Ind. Electron., 2019, 66, (5), pp. 38693880.
    25. 25)
      • 25. Bokalič, M., Brecl, K., Topič, M.: ‘Imaging inspection system and methodology for evaluation of inhomogeneities in PV modules – A case of multicrystalline silicon’, in ‘, 33rd European Photovoltaic Solar Energy Conf. and Exhibition’, Amsterdam, The Netherlands, 2017, pp. 16821685.
    26. 26)
      • 2. IEA PVPS Task 1: ‘2019 snapshot of global PV’ (IEA - International Energy Agency, Paris, France, 2019).
    27. 27)
      • 9. Limmanee, A., Udomdachanut, N., Songtrai, S., et al: ‘Field performance and degradation rates of different types of photovoltaic modules: a case study in Thailand’, Renew. Energy, 2016, 89, pp. 1217.
    28. 28)
      • 10. Jordan, D.C., Wohlgemuth, J.H., Kurtz, S.R.: ‘Technology and climate trends in PV module degradation’. 27th European Photovoltaic Solar Energy Conf. and Exhibition’, Frankfurt, Germany, 2012, p. 9.
    29. 29)
      • 3. ITRPV: ‘International technology roadmap for photovoltaic’ (ITRPV, Freiburg, Germany, 2018).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0156
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0156
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading