access icon free Fluctuation of PV array global maximum power point voltage during irradiance transitions caused by clouds

In well-designed photovoltaic (PV) power plants, such as in typical utility-scale PV plants, operational conditions are quite stable and homogeneous apart from the fast irradiance transitions caused by cloud shadings. These partial shading events cause fast power fluctuations leading even to stability and quality problems in power networks. Fast non-homogeneous irradiance transitions cause also mismatch losses in PV generators and the occurrence of multiple maximum power points (MPPs), which appear in a wide voltage range of the PV generator. In consequence, the global MPP can fluctuate in a wide voltage region causing possible MPP tracking problems and power losses. This article presents a study of the behaviour of the global MPP voltage of various PV arrays during irradiance transitions caused by clouds. The global MPP voltage, its rate of change and the differences in voltage and available energy between the global MPP and the MPP with the highest voltage of the PV generators have been analysed comprehensively, for the first time, by using the characteristics of around 8000 measured irradiance transitions. The global MPP voltage was found to vary between 28 and 112% of the nominal MPP voltage of the array.

Inspec keywords: maximum power point trackers; photovoltaic power systems; solar cell arrays; power supply quality

Other keywords: PV array global maximum power point voltage; quality problems; partial shading events; power losses; fast nonhomogeneous irradiance transitions; power networks; PV generator; fast power fluctuations; photovoltaic power plants; MPP tracking problems

Subjects: Photoelectric conversion; solar cells and arrays; Power supply quality and harmonics; Power electronics, supply and supervisory circuits; Solar power stations and photovoltaic power systems; Solar cells and arrays; DC-DC power convertors

References

    1. 1)
      • 11. Tomson, T.: ‘Transient processes of solar radiation’, Theor. Appl. Climatol., 2013, 112, (3), pp. 403408.
    2. 2)
      • 14. Lappalainen, K., Valkealahti, S.: ‘Output power variation of different PV array configurations during irradiance transitions caused by moving clouds’, Appl. Energy, 2017, 190, (6), pp. 902910.
    3. 3)
      • 21. Belhachat, F., Larbes, C.: ‘Modeling, analysis and comparison of solar photovoltaic array configurations under partial shading conditions’, Sol. Energy, 2015, 120, (10), pp. 399418.
    4. 4)
      • 15. Mäki, A., Valkealahti, S.: ‘Differentiation of multiple maximum power points of partially shaded photovoltaic power generators’, Renew. Energy, 2014, 71, (11), pp. 8999.
    5. 5)
      • 8. Boztepe, M., Guinjoan, F., Velasco-Quesada, G., et al: ‘Global MPPT scheme for photovoltaic string inverters based on restricted voltage window search algorithm’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 33023312.
    6. 6)
      • 10. Lappalainen, K., Valkealahti, S.: ‘Recognition and modelling of irradiance transitions caused by moving clouds’, Sol. Energy, 2015, 112, (2), pp. 5567.
    7. 7)
      • 1. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 439449.
    8. 8)
      • 13. Lappalainen, K., Valkealahti, S.: ‘Photovoltaic mismatch losses caused by moving clouds’, Sol. Energy, 2017, 158, (18), pp. 455461.
    9. 9)
      • 3. Ishaque, K., Salam, Z.: ‘A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 31953206.
    10. 10)
      • 18. Paraskevadaki, E.V., Papathanassiou, S.A.: ‘Evaluation of MPP voltage and power of mc-Si PV modules in partial shading conditions’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 923932.
    11. 11)
      • 4. Karaboga, D., Ozturk, C.: ‘A novel clustering approach: artificial bee colony (ABC) algorithm’, Appl. Soft Comput., 2011, 11, (1), pp. 652657.
    12. 12)
      • 19. Mäki, A., Valkealahti, S., Leppäaho, J.: ‘Operation of series-connected silicon-based photovoltaic modules under partial shading conditions’, Prog. Photovolt., Res. Appl., 2012, 20, (3), pp. 298309.
    13. 13)
      • 24. Lappalainen, K., Valkealahti, S.: ‘Mathematical parametrisation of irradiance transitions caused by moving clouds for PV system analysis’. Proc. 32nd European photovoltaic solar energy Conf., Munich, Germany, June 2016, pp. 14851489.
    14. 14)
      • 9. Furtado, A.M.S., Bradaschia, F., Cavalcanti, M.E., et al: ‘A reduced voltage range global maximum power point tracking algorithm for photovoltaic systems under partial shading conditions’, IEEE Trans. Ind. Electron., 2018, 65, (4), pp. 32523262.
    15. 15)
      • 17. Mäki, A., Valkealahti, S.: ‘Effect of PV power generator layout on the global MPP voltage range during cloud shading events’. Proc. 28th European photovoltaic solar energy Conf., Paris, France, September 2013, pp. 40634070.
    16. 16)
      • 20. Torres Lobera, D., Mäki, A., Huusari, J., et al: ‘Operation of TUT solar PV power station research plant under partial shading caused by snow and buildings’, Int. J. Photoenergy, 2013, 2013, Article ID: 837310, doi: http://dx.doi.org/10.1155/2013/837310.
    17. 17)
      • 12. Lappalainen, K., Valkealahti, S.: ‘Apparent velocity of shadow edges caused by moving clouds’, Sol. Energy, 2016, 138, (16), pp. 4752.
    18. 18)
      • 22. Rakesh, N., Madhavaram, T.V.: ‘Performance enhancement of partially shaded solar PV array using novel shade dispersion technique’, Front. Energy, 2016, 10, (2), pp. 227239.
    19. 19)
      • 2. Eberhart, R., Kennedy, J.: ‘A new optimizer using particle swarm theory’. Proc. 6th Int. Symp. Micro Machine and Human Science, Nagoya, Japan, October 1995, pp. 3943.
    20. 20)
      • 23. Villa, L.F.L., Picault, D., Raison, B., et al: ‘Maximizing the power output of partially shaded photovoltaic plants through optimization of the interconnections among its modules’, IEEE J. Photovoltaics, 2012, 2, (2), pp. 154163.
    21. 21)
      • 7. Ishaque, K., Salam, Z.: ‘A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition’, Renew. Sust. Energy Rev., 2013, 19, (3), pp. 475488.
    22. 22)
      • 6. Ahmed, N.A., Miyatake, M.: ‘A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions’, Electr. Power Syst. Res., 2008, 78, (5), pp. 777784.
    23. 23)
      • 5. Sundareswaran, K., Sankar, P., Nayak, P.S.R., et al: ‘Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony’, IEEE Trans. Sust. Energy, 2015, 6, (1), pp. 198209.
    24. 24)
      • 16. Furtado, A.M.S., Bradaschia, F., Cavalcanti, M.E., et al: ‘Power voltage characteristics and global MPPT algorithms for any severe partial shading condition’, Proc. 2017 Brazilian Power Electronics Conf., Juiz de Fora, Brazil, November 2017, https://doi.org/10.1109/COBEP.2017.8257243.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0085
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0085
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading