Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analytical LVRT analysis of doubly fed induction generator with MPC-based DSCC/DRCC

Under the low-voltage ride-through (LVRT) of the doubly fed induction generator, extra efforts are required for the model predictive control (MPC)-based direct stator/rotor current controls (DSCC/DRCC) against the stator flux oscillation. Constant stator/rotor currents are maintained at the cost of rotor/stator current oscillations, respectively, due to stator flux oscillation. Necessity to incorporate the stator flux transient in the MPC-based DSCC/DRCC under the LVRT is analysed based on tracking effects of the current references. To quantify LVRT effect with the MPC-based DSCC/DRCC, analytical expressions of the stator current, rotor current and rotor voltage are proposed, whose accuracy is validated based on comparison with the time-domain simulations. On the basis of analytical study, advantages and disadvantages of the DSCC/DRCC are analysed considering impacts of the current oscillations on the security of the rotor-side converter. With the DRCC, rotor voltage increase is suppressed with damping to the stator flux oscillation and rotor current constraint is satisfied without decreasing stator output power; thus, the LVRT effect is desirable compared with the DSCC. The MPC-based DSCC/DRCC is extended to LVRT under the asymmetrical fault to realise effective control to both the positive and negative sequence stator/rotor currents.

References

    1. 1)
      • 23. Abdelrahem, M., Kennel, R.: ‘Efficient direct model predictive control for doubly fed induction generators’, Electr. Power Compon. Syst., 2017, 45, (5), pp. 574587.
    2. 2)
      • 33. Sun, D., Wang, X.: ‘Low-complexity model predictive direct power control for DFIG under both balanced and unbalanced grid conditions’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 51865196.
    3. 3)
      • 3. Yan, L., Chen, X., Zhou, X., et al: ‘Perturbation compensation-based non-linear adaptive control of ESS-DVR for the LVRT capability improvement of wind farms’, IET Renew. Power Gener., 2018, 12, (13), pp. 15001507.
    4. 4)
      • 11. Hu, J., Zhu, J., Dorrell, D.G.: ‘Model-predictive direct power control of doubly fed induction generators under unbalanced grid voltage conditions in wind energy applications’, IET Renew. Power Gener., 2014, 8, (6), pp. 687695.
    5. 5)
      • 35. Klein, M., Rogers, G.J., Kundur, P.: ‘A fundamental study of inter-area oscillations in power systems’, IEEE Trans. Power Syst., 1991, 6, (3), pp. 914921.
    6. 6)
      • 25. Zhi, D., Xu, L.: ‘Direct power control of DFIG with constant switching frequency and improved transient performance’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 110118.
    7. 7)
      • 30. Taher, S.A., Arani, Z.D., Rahimi, M., et al: ‘Model predictive fuzzy control for enhancing FRT capability of DFIG-based WT in real-time simulation environment’, Energy Syst., 2018, 9, pp. 899919.
    8. 8)
      • 39. Xu, L., Wang, Y.: ‘Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions’, IEEE Trans. Power Syst., 2007, 22, (1), pp. 314323.
    9. 9)
      • 18. Wang, X., Sun, D.: ‘Three-vector-based low-complexity model predictive direct power control strategy for doubly fed induction generators’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 773782.
    10. 10)
      • 4. da Silveira, S.E., Silva, S.M., Cardoso Filho, B.J.: ‘Fault ride-through enhancement in DFIG with control of stator flux using minimised series voltage compensator’, IET Renew. Power Gener., 2018, 12, (11), pp. 12341240.
    11. 11)
      • 5. Liu, S., Bi, T., Jia, K., et al: ‘Coordinated fault-ride-through strategy for doubly fed induction generators with enhanced reactive and active power support’, IET Renew. Power Gener., 2016, 10, (2), pp. 203211.
    12. 12)
      • 16. Liu, X., Kong, X.: ‘Nonlinear model predictive control for DFIG-based wind power generation’, IEEE Trans. Autom. Sci. Eng., 2014, 11, (4), pp. 10461055.
    13. 13)
      • 40. Zhou, Y., Bauer, P., Ferreira, J.A., et al: ‘Operation of grid-connected DFIG under unbalanced grid voltage condition’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 240246.
    14. 14)
      • 6. Xie, D., Xu, Z., Yang, L., et al: ‘A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 33023310.
    15. 15)
      • 13. Bayhan, S., Abu-Rub, H., Ellabban, O.: ‘Sensorless model predictive control scheme of wind-driven doubly fed induction generator in dc microgrid’, IET Renew. Power Gener., 2016, 10, (4), pp. 514521.
    16. 16)
      • 24. Sguarezi Filho, A.J., de Oliveira Filho, M.E., Ruppert Filho, E.: ‘A predictive power control for wind energy’, IEEE Trans. Sustain. Energy, 2011, 2, (1), pp. 97105.
    17. 17)
      • 34. Xiao, S., Geng, H., Zhou, H., et al: ‘Analysis of the control limit for rotor-side converter of doubly fed induction generator-based wind energy conversion system under various voltage dips’, IET Renew. Power Gener., 2013, 7, (1), pp. 7181.
    18. 18)
      • 32. Sguarezi Filho, A.J., Ruppert, E.: ‘A deadbeat active and reactive power control for doubly fed induction generator’, Electr. Power Compon. Syst., 2010, 38, (5), pp. 592602.
    19. 19)
      • 20. Cheng, C., Nian, H.: ‘Low-complexity model predictive stator current control of DFIG under harmonic grid voltages’, IEEE Trans. Energy Convers., 2017, 32, (3), pp. 10721080.
    20. 20)
      • 8. Tapia, A., Tapia, G., Ostolaza, J.X., et al: ‘Modeling and control of a wind turbine driven doubly fed induction generator’, IEEE Trans. Energy Convers., 2003, 18, (2), pp. 194204.
    21. 21)
      • 12. Cheng, C., Cheng, P., Nian, H., et al: ‘Model predictive stator current control of doubly fed induction generator during network unbalance’, IET Power Electron., 2018, 11, (1), pp. 120128.
    22. 22)
      • 29. Zarei, M.E., Asaei, B.: ‘A robust direct current control of DFIG wind turbine with low current THD based predictive approach’, Wind Energy, 2016, 19, pp. 11811199.
    23. 23)
      • 10. Zhi, D., Xu, L., Williams, B.W.: ‘Model-based predictive direct power control of doubly fed induction generators’, IEEE Trans. Power Electron., 2010, 25, (2), pp. 341351.
    24. 24)
      • 38. Liang, J., Qiao, W., Harley, R.G.: ‘Feed-forward transient current control for low-voltage ride-through enhancement of DFIG wind turbines’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 836843.
    25. 25)
      • 17. Hu, J., Zhu, J., Dorrell, D.G.: ‘Predictive direct power control of doubly fed induction generators under unbalanced grid voltage conditions for power quality improvement’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 943950.
    26. 26)
      • 1. Tsili, M., Papathanassiou, S.: ‘A review of grid code technical requirements for wind farms’, IET Renew. Power Gener., 2009, 3, (3), pp. 308332.
    27. 27)
      • 26. Phan, V.T., Logenthiran, T., Woo, W.L., et al: ‘Analysis and compensation of voltage unbalance of a DFIG using predictive rotor current control’, Int. J. Electr. Power Energy Syst., 2016, 75, pp. 818.
    28. 28)
      • 27. Xu, L., Zhi, D., Williams, B.W.: ‘Predictive current control of doubly fed induction generators’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 41434153.
    29. 29)
      • 9. Sguarezi Filho, A.J., Ruppert Filho, E.: ‘Model-based predictive control applied to the doubly fed induction generator direct power control’, IEEE Trans. Sustain. Energy, 2012, 3, (3), pp. 398406.
    30. 30)
      • 22. Sguarezi Filho, A.J., de Oliveira, A.L., Rodrigues, L.L., et al: ‘A robust finite control set applied to the DFIG power control’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6, (4), pp. 16921698.
    31. 31)
      • 15. Soliman, M., Malik, O.P., Westwick, D.T.: ‘Multiple model predictive control for wind turbines with doubly fed induction generators’, IEEE Trans. Sustain. Energy, 2011, 2, (3), pp. 215225.
    32. 32)
      • 28. Solís-Chaves, J.S., Barreto, M.S., Salles, M.B.C., et al: ‘A direct power control for DFIG under a three phase symmetrical voltage sag condition’, Control Eng. Pract., 2017, 65, pp. 4858.
    33. 33)
      • 37. Bhattarai, R., Gurung, N., Ghosh, S., et al: ‘Parametrically robust dynamic speed estimation based control for doubly fed induction generator’, IEEE Trans. Ind. Electron., 2018, 54, (6), pp. 65296542.
    34. 34)
      • 19. Gonçalves, P.F.C., Cruz, S.M.A., Abadi, M.B., et al: ‘Fault-tolerant predictive power control of a DFIG for wind energy applications’, IET Electr. Power Appl., 2017, 11, (6), pp. 969980.
    35. 35)
      • 14. Sultana, W.R., Sahoo, S.K., Sukchai, S., et al: ‘A review on state of art development of model predictive control for renewable energy applications’, Renew. Sustain. Energy Rev., 2017, 76, pp. 391406.
    36. 36)
      • 7. Kou, P., Liang, D., Li, J., et al: ‘Finite-control-set model predictive control for DFIG wind turbines’, IEEE Trans. Autom. Sci. Eng., 2018, 15, (3), pp. 10041013.
    37. 37)
      • 21. Errouissi, R., Al-Dura, A., Muyeen, S.M., et al: ‘Offset-free direct power control of DFIG under continuous-time model predictive control’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 22652277.
    38. 38)
      • 36. Li, S.: ‘Power flow modelling to doubly fed induction generators (DFIGs) under power regulation’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 32923301.
    39. 39)
      • 2. Jerin, A.R.A., Kaliannan, P., Subramaniam, U., et al: ‘Review on FRT solutions for improving transient stability in DFIG-WTs’, IET Renew. Power Gener., 2018, 12, (15), pp. 17861799.
    40. 40)
      • 31. Huang, J., Li, S.: ‘Analytical expression for LVRT of BDFIG with enhanced current control to CW and reactive power support from GSC’, Int. J. Electr. Power Energy Syst., 2018, 98, pp. 243255.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0063
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0063
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address