access icon free Energy management and power quality enhancement in grid-tied single-phase PV system using modified PUC converter

Pack U-Cell (PUC) multi-level inverter is an attractive topology which widely investigated in the past few years for renewable energy conversion systems. This study introduces a modified five-level packed Unit-cell converter (MPUC5) for single-phase double stage grid-tied photovoltaic (PV) system with unity power factor. The proposed system operates as a single-phase active power filter able to compensate reactive power generated by non-linear loads connected to the point of common coupling, feeds the non-linear load by the generated PV power, and injects the extra power into the grid. The MPUC5 inverter has a special topology with two DC-link capacitors and six switches. One DC-link of the inverter is connected to the PV arrays through DC/DC Cùk converter to draw the maximum power. Therefore, finite-control-set model predictive control (FCS-MPC) for such configuration appears as a promising alternative for this inverter to work properly. Where the proposed FCS-MPC algorithm is designed to ensure a high grid current quality, taking into consideration the issue of the capacitor voltages balancing and the switching frequency minimisation. Both simulation results and experimental validation through real-time hardware in the loop system prove the validity and feasibility of the proposed control scheme, regarding PV power management and quality enhancement.

Inspec keywords: predictive control; invertors; control system synthesis; power supply quality; solar cell arrays; power capacitors; minimisation; power factor; energy management systems; power generation control; active filters; power filters; power grids; photovoltaic power systems

Other keywords: FCS-MPC algorithm; capacitor voltage balancing; MPUC5 inverter; modified five-level packed unit-cell converter; single-phase double stage grid-tied photovoltaic system; unity power factor; modified PUC converter; pack u-cell multilevel inverter; generated PV power; high grid current quality; DC-DC Cùk converter; PV arrays; DC-link capacitors; finite-control-set model predictive control; energy management; renewable energy conversion systems; single-phase active power filter; power quality enhancement; grid-tied single-phase PV system; point of common coupling; quality enhancement; reactive power compensation; PV power management; switching frequency minimisation; nonlinear load; loop system

Subjects: Optimisation techniques; DC-AC power convertors (invertors); Optimal control; Optimisation techniques; Control of electric power systems; Other power apparatus and electric machines; Power system management, operation and economics; Control system analysis and synthesis methods; Solar power stations and photovoltaic power systems

References

    1. 1)
      • 22. Nademi, H., Das, A., Burgos, R., et al: ‘A new circuit performance of modular multilevel inverter suitable for photovoltaic conversion plants’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, pp. 393404.
    2. 2)
      • 14. Trabelsi, M., Ghazi, K.A.., Al-Emadi, N., et al: ‘An original controller design for a grid connected PV system’. IECON 2012–38th Annu. Conf. IEEE Ind. Electron. Soc., IEEE, 2012, pp. 924929.
    3. 3)
      • 3. Chen, Z., Blaabjerg, F., Pedersen, J.K.: ‘A multi-functional power electronic converter in distributed generation power systems’. IEEE 36th Power Electron. Spec. Conf. 2005. PESC'05 IEEE, 2005, pp. 17381744.
    4. 4)
      • 15. Chavarria, J., Biel, D., Guinjoan, F., et al: ‘Energy-balance control of PV cascaded multilevel grid-connected inverters under level-shifted and phase-shifted PWMs’, IEEE Trans. Ind. Electron., 2013, 60, pp. 98111.
    5. 5)
      • 2. Wang, X., Zhuo, F., Li, J., et al: ‘Modeling and control of dual-stage high-power multifunctional PV system in d-Q-coordinate’, IEEE Trans. Ind. Electron., 2013, 60, pp. 15561570.
    6. 6)
      • 27. Vazquez, S., Leon, J.I., Franquelo, L.G., et al: ‘Model predictive control: a review of its applications in power electronics’, IEEE Ind. Electron. Mag., 2014, 8, pp. 1631.
    7. 7)
      • 31. Kakosimos, P.E., Kladas, A.G., Manias, S.N.: ‘Fast photovoltaic-system voltage- or current-oriented MPPT employing a predictive digital current-controlled converter’, IEEE Trans. Ind. Electron., 2013, 60, pp. 56735685.
    8. 8)
      • 8. Hanif, M., Khadkikar, V., Xiao, W., et al: ‘Two degrees of freedom active damping technique for LCL filter-based grid connected PV systems’, IEEE Trans. Ind. Electron., 2014, 61, pp. 27952803.
    9. 9)
      • 4. Micallef, A., Apap, M., Spiteri-Staines, C., et al: ‘Mitigation of harmonics in grid-connected and islanded microgrids via virtual admittances and impedances’, IEEE Trans. Smart Grid, 2017, 8, pp. 651661.
    10. 10)
      • 5. Ouchen, S., Betka, A., Abdeddaim, S., et al: ‘Fuzzy-predictive direct power control implementation of a grid connected photovoltaic system, associated with an active power filter’, Energy Convers. Manag., 2016, 122, pp. 515525.
    11. 11)
      • 10. Patel, H., Agarwal, V.: ‘Investigations into the performance of photovoltaics-based active filter configurations and their control schemes under uniform and non-uniform radiation conditions’, IET Renew. Power Gener., 2010, 4, pp. 1222.
    12. 12)
      • 9. Barater, D., Buticchi, G., Lorenzani, E., et al: ‘Active common-mode filter for ground leakage current reduction in grid-connected PV converters operating with arbitrary power factor’, IEEE Trans. Ind. Electron., 2014, 61, pp. 39403950.
    13. 13)
      • 21. Metri, J.I., Vahedi, H., Kanaan, H.Y., et al: ‘Real-time implementation of model-predictive control on seven-level packed U-cell inverter’, IEEE Trans. Ind. Electron., 2016, 63, pp. 41804186.
    14. 14)
      • 36. Cortes, P., Kouro, S., La Rocca, B., et al: ‘Guidelines for weighting factors design in model predictive control of power converters and drives’. IEEE Int. Conf. on Ind. Tech. (ICIT), Gippsland, Australia, February 2009, pp. 17.
    15. 15)
      • 16. Vahedi, H., Kanaan, H.Y., Al-Haddad, K.: ‘PUC converter review: topology, control and applications’. Ind. Electron. Soc. IECON 2015–41st Annu. Conf. IEEE, 2015, pp. 43344339.
    16. 16)
      • 24. Kouro, S., Cortés, P., Vargas, R., et al: ‘Model predictive control – a simple and powerful method to control power converters’, IEEE Trans. Ind. Electron., 2009, 56, pp. 18261838.
    17. 17)
      • 28. Vazquez, S., Rodriguez, J., Rivera, M., et al: ‘Model predictive control for power converters and drives: advances and trends’, IEEE Trans. Ind. Electron., 2017, 64, pp. 935947.
    18. 18)
      • 19. Vahedi, H., Shojaei, A.A.., Dessaint, L-A., et al: ‘Reduced DC-link voltage active power filter using modified PUC5 converter’, IEEE Trans. Power. Electron., 2018, 33, pp. 943947.
    19. 19)
      • 29. Pakdel, M., Jalilzadeh, S.: ‘A new family of multilevel grid connected inverters based on packed U cell topology’, Sci. Rep., 2017, 7, (1), p. 12396.
    20. 20)
      • 33. Safari, A., Mekhilef, S. ‘Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter’, IEEE Trans. Ind. Electron., 2011, 58, pp. 11541161.
    21. 21)
      • 6. Liu, L., Li, H., Xue, Y., et al: ‘Decoupled active and reactive power control for large-scale grid-connected photovoltaic systems using cascaded modular multilevel converters’, IEEE Trans. Power Electron., 2015, 30, pp. 176187.
    22. 22)
      • 30. Mohamed, A.A., Berzoy, A., Mohammed, O.A.: ‘Design and hardware implementation of FL-MPPT control of PV systems based on GA and small-signal analysis’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 279290.
    23. 23)
      • 18. Trabelsi, M., Bayhan, S., Ghazi, K.A., et al: ‘Finite-control-set model predictive control for grid-connected packed-U-cells multilevel inverter’, IEEE Trans. Ind. Electron., 2016, 63, pp. 72867295.
    24. 24)
      • 34. Tekeshwar Prasad, S., Dixit, T.V.: ‘Modelling and analysis of perturb & observe and incremental conductance MPPT algorithm for PV array using Ċuk converter’. Electr. Electron. Comput. Sci. (SCEECS), 2014 IEEE Students’ Conf, 2014, pp. 16.
    25. 25)
      • 7. Tripathi, R.N., Singh, A., Hanamoto, T.: ‘Design and control of LCL filter interfaced grid connected solar photovoltaic (SPV) system using power balance theory’, Int J. Electr. Power Energy Syst., 2015, 69, pp. 264272.
    26. 26)
      • 20. Vahedi, H., Labbé, P.-A., Al-Haddad, K.: ‘Sensor-less five-level packed U-cell (PUC5) inverter operating in stand-alone and grid-connected modes’, IEEE Trans. Ind. Inf., 2016, 12, pp. 361370.
    27. 27)
      • 13. Abu-Rub, H., Malinowski, M., Al-Haddad, K.: ‘Power electronics for renewable energy systems, transportation and industrial applications’ (John Wiley & Sons, USA, 2014).
    28. 28)
      • 32. Kihal, A., Krim, F., Talbi, B., et al: ‘A robust control of two-stage grid-tied PV systems employing integral sliding mode theory’, Energies, 2018, 11, (10), p. 2791.
    29. 29)
      • 1. Eltawil, M.A., Zhao, Z.: ‘Grid-connected photovoltaic power systems: technical and potential problems – a review’, Renew. Sustain. Energy Rev., 2010, 14, pp. 112129.
    30. 30)
      • 17. Vahedi, H., Sharifzadeh, M., Al-Haddad, K.: ‘Modified seven-level pack U-Cell inverter for photovoltaic applications’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6, pp. 15081516.
    31. 31)
      • 23. Rodriguez, J., Cortes, P.: ‘Predictive control of power converters and electrical drives’ (John Wiley & Sons, USA, 2012), vol. 40.
    32. 32)
      • 11. Ortúzar, M.E., Carmi, R.E., Dixon, J.W., et al: ‘Voltage-source active power filter based on multilevel converter and ultra-capacitor DC link’, IEEE Trans. Ind. Electron., 2006, 53, pp. 477485.
    33. 33)
      • 35. Sahli, A., Krim, F., Belaout, A.: ‘Energy management and power quality improvement in grid-connected photovoltaic systems’. 2017 Int. Renewable and Sustainable Energy Conf. (IRSEC), 2017 IEEE, 2017, pp. 17.
    34. 34)
      • 25. Rodriguez, J., Kennel, R.M., Espinoza, J.R., et al: ‘High-performance control strategies for electrical drives: an experimental assessment’, IEEE Trans. Ind. Electron., 2012, 59, pp. 812820.
    35. 35)
      • 12. Abu-Rub, H., Holtz, J., Rodriguez, J., et al: ‘Medium-voltage multilevel converters–state of the art, challenges, and requirements in industrial applications’, IEEE Trans. Ind. Electron., 2010, 57, pp. 25812596.
    36. 36)
      • 26. Rodriguez, J., Kazmierkowski, M.P., Espinoza, J.R., et al: ‘State of the art of finite control set model predictive control in power electronics’, IEEE Trans. Ind. Inf., 2013, 9, pp. 10031016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0028
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading