http://iet.metastore.ingenta.com
1887

Modelling and analysis of an analogue MPPT-based PV battery charging system utilising dc–dc boost converter

Modelling and analysis of an analogue MPPT-based PV battery charging system utilising dc–dc boost converter

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nowadays, the research is being devoted to the development of rapid and precise maximum power point tracking (MPPT) for various photovoltaic (PV) applications. However, the constraints imposed by size, cost, efficiency, and tracking performances essentially limit the application of conventional MPPT techniques and their analysis methodologies. This study recommends a fast and robust analogue PV MPPT for the battery charging system using dc–dc boost converter. The fast dynamic performances with absolute robustness are ensured here by fast-scale stability analysis of actually switched boost converter using the concepts based on non-linear dynamics and bifurcation theory. Such concepts not only provide the information to design an efficient MPPT system under rapidly changing environmental conditions but also guarantee the system to operate either in period-1 or chaotic mode. The theoretical and mathematical analyses are experimentally verified using a prototype PV battery charging system utilising dc–dc boost converter. It is presented that operating the MPPT system in chaos not only yields the broader power spectrum with reduced spectral peaks at the multiples of converter's switching frequency but also exhibits high overall conversion efficiency.

References

    1. 1)
      • 1. Xiong, X., Tse, C.K., Ruan, X.: ‘Bifurcation analysis of standalone photovoltaic-battery hybrid power system’, IEEE Trans. Circuits Syst. I, 2013, 60, (5), pp. 13541365.
    2. 2)
      • 2. Lim, Y.H., Hamill, D.C.: ‘Simple maximum power point tracker for photovoltaic arrays’, Electron. Lett., 2000, 36, pp. 997999.
    3. 3)
      • 3. Maity, S., Sahu, P.K.: ‘Modeling and analysis of a fast and robust module-integrated analog photovoltaic MPP tracker’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 280291.
    4. 4)
      • 4. Petrone, G., Spagnuolo, G., Vitelli, M.: ‘An analog technique for distributed MPPT PV applications’, IEEE Trans. Ind. Electron., 2012, 59, (12), pp. 47134722.
    5. 5)
      • 5. Selcan, D., Kirbis, G., Kramberger, I.: ‘Analog maximum power point tracking for spacecraft within a low earth orbit’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (1), pp. 368378.
    6. 6)
      • 6. Deane, J.H.B., Hamill, D.C.: ‘Improvement of power supply EMC by chaos’, Electron. Lett., 1996, 32, (12), p. 1045.
    7. 7)
      • 7. Banerjee, S., Yorke, J.A., Grebogi, C.: ‘Robust chaos’, Phys. Rev. Lett., 1998, 80, pp. 30493052.
    8. 8)
      • 8. Ott, E.: ‘Chaos in dynamical systems’ (Cambridge University Press, Cambridge, England, 2002, 2nd edn.).
    9. 9)
      • 9. Banerjee, S., Ranjan, P., Grebogi, C.: ‘Bifurcations in two-dimensional piecewise smooth maps – theory and applications in switching circuits’, IEEE Trans. Circuits Syst. I, 2000, 47, (5), pp. 633643.
    10. 10)
      • 10. Yuan, G., Banerjee, S., Ott, E., et al: ‘Border collision bifurcations in the buck converter’, IEEE Trans. Circuits Syst. I, 1998, 45, (7), pp. 707716.
    11. 11)
      • 11. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 439449.
    12. 12)
      • 12. Abdelsalam, A.K., Massoud, A.M., Ahmed, S., et al: ‘High-performance adaptive perturb and observe MPPT technique for photovoltaic-based micro grids’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 10101021.
    13. 13)
      • 13. Piegari, L., Rizzo, R.: ‘Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking’, IET Renew. Power Gener., 2010, 4, (4), pp. 317328.
    14. 14)
      • 14. Kish, G.J., Lee, J.J., Lehn, P.W.: ‘Modelling and control of photovoltaic panels utilising the incremental conductance method for maximum power point tracking’, IET Renew. Power Gener., 2012, 6, (4), pp. 259266.
    15. 15)
      • 15. Zakzouk, N.E., Elsaharty, M.A., Abdelsalam, A.K., et al: ‘Improved performance low-cost incremental conductance PV MPPT technique’, IET Renew. Power Gener., 2016, 10, (4), pp. 561574.
    16. 16)
      • 16. Koutroulis, E., Kalaitzakis, K., Voulgaris, N.C.: ‘Development of a microcontroller-based, photovoltaic maximum power point tracking control system’, IEEE Trans. Power Electron., 2001, 16, (1), pp. 4654.
    17. 17)
      • 17. Yang, C.Y., Hsieh, C.Y., Feng, F.K., et al: ‘Highly efficient analog maximum power point tracking (AMPPT) in a photovoltaic system’, IEEE Trans. Circuits Syst. I, 2012, 59, (7), pp. 15461556.
    18. 18)
      • 18. Mohd Zainuri, M.A.A., Mohd Radzi, M.A., Soh, A.C., et al: ‘Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter’, IET Renew. Power Gener., 2014, 8, (2), pp. 183194.
    19. 19)
      • 19. Zhang, L., Hurley, W.G., Wölfle, W.: ‘A new approach to achieve maximum power point tracking for PV system with a variable inductor’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 10311037.
    20. 20)
      • 20. de Brito, M.A.G., Galotto, L., Sampaio, L.P., et al: ‘Evaluation of the main MPPT techniques for photovoltaic applications’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 11561167.
    21. 21)
      • 21. Khanna, R., Zhang, Q., Stanchina, W.E., et al: ‘Maximum power point tracking using model reference adaptive control’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 14901499.
    22. 22)
      • 22. Pilawa-Podgurski, R.C.N., Perreault, D.J.: ‘Submodule integrated distributed maximum power point tracking for solar photovoltaic applications’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 29572967.
    23. 23)
      • 23. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al: ‘Power electronics systems for the grid integration of renewable energy sources: a survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016.
    24. 24)
      • 24. Levron, Y., Shmilovitz, D.: ‘Maximum power point tracking employing sliding mode control’, IEEE Trans. Circuits Syst. I, 2013, 60, (3), pp. 724732.
    25. 25)
      • 25. Mamarelis, E., Petrone, G., Spagnuolo, G.: ‘An hybrid digital–analog sliding mode controller for photovoltaic applications’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 10941103.
    26. 26)
      • 26. Shabestari, P.M., Gharehpetian, G.B., Riahy, G.H., et al: ‘Voltage controllers for dc–dc boost converters in discontinuous current mode’. Int. Energy Sustainable Conf. (IESC), 2015, pp. 17.
    27. 27)
      • 27. Ghanaatian, M., Lotfifard, S.: ‘Control of flywheel energy storage systems in the presence of uncertainties’, IEEE Trans. Sustain. Energy, 2019, 10, (1), pp. 3645.
    28. 28)
      • 28. Banerjee, S., Verghese, G.C.: ‘Nonlinear phenomena in power electronics – attractors, bifurcations, chaos, and nonlinear control’ (IEEE Press, New York, 2001).
    29. 29)
      • 29. Banerjee, S., Karthik, M.S., Yuan, G., et al: ‘Bifurcations in one-dimensional piecewise smooth maps – theory and applications in switching circuits’, IEEE Trans. Circuits Syst. I, 2000, 47, (3), pp. 389394.
    30. 30)
      • 30. Stankovic, A.M., Verghese, G.E., Perreault, D.J.: ‘Analysis and synthesis of randomized modulation schemes for power converters’, IEEE Trans. Power Electron., 1995, 10, (6), pp. 680693.
    31. 31)
      • 31. Qin, S., Cady, S.T., Domínguez-García, A.D., et al: ‘A distributed approach to maximum power point tracking for photovoltaic submodule differential power processing’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 20242040.
    32. 32)
      • 32. Deane, J.H.B., Ashwin, P., Hamill, D.C., et al: ‘Calculation of the periodic spectral components in a chaotic dc–dc converter’, IEEE Trans. Circuits Syst. I, 1999, 46, (11), pp. 13131319.
    33. 33)
      • 33. Venturini, R.P., Scarpa, V.V.R., Spiazzi, G., et al: ‘Analysis of limit cycle oscillations in maximum power point tracking algorithms’. IEEE Power Electronics Specialists Conf. (PESC), Rhodes, Greece, 2008, pp. 378384.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.6273
Loading

Related content

content/journals/10.1049/iet-rpg.2018.6273
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address