http://iet.metastore.ingenta.com
1887

Dual-output DC/DC boost converter for bipolar DC microgrids

Dual-output DC/DC boost converter for bipolar DC microgrids

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new step-up DC/DC converter for bipolar DC microgrids. This relies on utilising a new converter topology which offers bipolar DC outputs with the key features of boosting the input voltage and balancing the output voltages. In addition, the proposed converter can transfer power from output terminals to the input side which leads to energy saving. Due to the microgrid's loading conditions, different modes can be considered, and the operational principles are analysed in details. Applying the circuit average method, the small signal model of the proposed converter is derived. Then the appropriate controllers are designed considering the small signal model of the converter in each mode. Finally, a prototype of the proposed converter has been implemented in the laboratory, and the experimental results have verified the converter's ability to balance the bipolar DC grid's voltages and its capability of transferring power in various microgrid's conditions.

References

    1. 1)
      • 1. Kakigano, H., Miura, Y., Ise, T., et al: ‘DC micro-grid for super high quality distribution-system configuration and control of distributed generations and energy storage devices’. Proc. IEEE Power Electronics Specialists Conference, Jeju, South Korea, 2006, vol. 6, pp. 1822.
    2. 2)
      • 2. Anand, S., Fernandes, B. G., Guerrero, J.M.: ‘Distributed control to ensure proportional load sharing and improve voltage regulation in low voltage DC microgrids’, Fuel, 2013, 3, p. v4.
    3. 3)
      • 3. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled AC and DC microgrids: A general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    4. 4)
      • 4. Kakigano, H., Miura, Y., Ise, T.: ‘Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 22462258.
    5. 5)
      • 5. Brenna, M., Tironi, E., Ubezio, G.: ‘Proposal of a local dc distribution network with distributed energy resources’. 2004. 11th Int. Conf. on in Harmonics and Quality of Power, Lake Placid, NY, USA, 2004, pp. 397402.
    6. 6)
      • 6. Kakigano, H., Miura, Y., Ise, T.: ‘Low-voltage bipolar-type DC microgrid for super high quality distribution’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 30663075.
    7. 7)
      • 7. Kakigano, H., Miura, Y., Ise, T., et al: ‘DC voltage control of the DC micro-grid for super high quality distribution’. Power Conversion Conf.-Nagoya, 2007. PCC'07, 2007, pp. 518525.
    8. 8)
      • 8. Lago, J., Moia, J., Heldwein, M.L.: ‘Evaluation of power converters to implement bipolar DC active distribution networks—DC-DC converters’. Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, USA, 2011, pp. 985990.
    9. 9)
      • 9. Tanaka, T., Sekiya, T., Baba, Y., et al: ‘A new half-bridge based inverter with the reduced-capacity DC capacitors for DC micro-grid’. Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, USA, 2010, pp. 25642569.
    10. 10)
      • 10. Swati, S., Verma, H.K.: ‘Step up DC-DC converters for PV applications: a review’, J. Controller Convert., 2018, 3, (2), pp. 17.
    11. 11)
      • 11. Giorgio, S., Biadene, D., Marconi, S., et al: ‘Nonisolated high-step-up DC–DC converter with minimum switch voltage stress’, IEEE Trans. Power Electron., 2019, 34, (2), pp. 14701480.
    12. 12)
      • 12. Olive, R., Mishra, S.: ‘Boost-derived hybrid converter with simultaneous DC and AC outputs’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 10821093.
    13. 13)
      • 13. Subudhi, P.S., Krithiga, S.: ‘Ybrid converter for solar powered smart home system’, Int. J. Pure Appl. Math., 2018, 120, (6), pp. 13631373.
    14. 14)
      • 14. Masoud, J., Dorcheh, M.S.: ‘Resonant multi-input/multi-output/bidirectional ZCS step-down DC–DC converter with systematic synthesis for point-to-point power routing’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 60246032.
    15. 15)
      • 15. Rasoul, F., Farzanehfard, H.: ‘Soft-switched non-isolated high step-up three-port DC–DC converter for hybrid energy systems’, IEEE Trans. Power Electron., 2018, 33, pp. 1010110111.
    16. 16)
      • 16. Faezeh, K., Alizadeh, R., Banaei, M.R.: ‘A new three input DC/DC converter for hybrid PV/FC/battery applications’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (4), pp. 17711778.
    17. 17)
      • 17. Santanu, K.M., Kumar, K.: ‘Boost topology based multi-output converters’. Industry Applications Society Annual Meeting, Cincinnati, OH, USA, 2017, pp. 15.
    18. 18)
      • 18. Alireza, N., Zare, F., Ghosh, A., et al: ‘Multi-output DC–DC converters based on diode-clamped converters configuration: Topology and control strategy’, IET Power Electron., 2010, 3, (2), pp. 197208.
    19. 19)
      • 19. Anish, A., Bussa, V.K., Singh, R.K., et al: ‘Quadratic boost derived hybrid multi-output converter’, IET Power Electron., 2017, 10, (15), pp. 20422054.
    20. 20)
      • 20. Chen, H.-C., Lin, W.-J.: ‘MPPT and voltage balancing control with sensing only inductor current for photovoltaic-fed, three-level, boost-type converters’, IEEE Trans. Power Electron., 2014, 29, (1), pp. 2935.
    21. 21)
      • 21. Wu, H., He, X.: ‘Single phase three-level power factor correction circuit with passive lossless snubber’, IEEE Trans. Power Electron., 2002, 17, (6), pp. 946953.
    22. 22)
      • 22. Kwon, J.-M., Kwon, B.-H., Nam, K.-H.: ‘Three-phase photovoltaic system with three-level boosting MPPT control’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 23192327.
    23. 23)
      • 23. Tan, L., Wu, B., Yaramasu, V., et al: ‘Effective voltage balance control for bipolar-dc-bus-fed EV charging station with three-level DC–DC fast charger’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 40314041.
    24. 24)
      • 24. Hao, Z., Jing-hua, Z., Bing, H., et al: ‘A new interleaved three-level boost converter and neutral-point potential balancing’. 2013 2nd Int. Symp. on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), Toronto, Canada, 2013, pp. 10931096.
    25. 25)
      • 25. Xia, C., Gu, X., Shi, T., et al: ‘Neutral-point potential balancing of three-level inverters in direct-driven wind energy conversion system’, IEEE Trans. Energy Convers., 2011, 26, (1), pp. 1829.
    26. 26)
      • 26. Zhang, X., Gong, C.: ‘Dual-buck half-bridge voltage balancer’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 31573164.
    27. 27)
      • 27. Zhang, X., Gong, C., Yao, Z.: ‘Three-level DC converter for balancing DC 800-V voltage’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 34993507.
    28. 28)
      • 28. Shang, M., Wang, H.: ‘A ZVS integrated single-input-dual-output DC/DC converter for high step-up applications’. Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016, pp. 16.
    29. 29)
      • 29. Chen, H.-C., Liao, J.-Y.: ‘Modified interleaved current sensorless control for three-level boost PFC converter with considering voltage imbalance and zero-crossing current distortion’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 68966904.
    30. 30)
      • 30. Krishna, R., Soman, D.E., Kottayil, S.K., et al: ‘Pulse delay control for capacitor voltage balancing in a three-level boost neutral point clamped inverter’, IET Power Electron., 2015, 8, (2), pp. 268277.
    31. 31)
      • 31. Tavakoli, S.D., Kadkhodaei, G., Mahdavyfakhr, M., et al: ‘Interlinking converters in application of bipolar dc microgrids’. 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC), Mashhad, Iran, 2017, pp. 3742.
    32. 32)
      • 32. Li, Y., Junyent-Ferré, A., Rodriguez-Bernuz, J.-M.: ‘A three-phase active rectifier topology for bipolar DC distribution’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 10631074.
    33. 33)
      • 33. Mallik, A., Khaligh, A.: ‘A high step-down dual output non-isolated DC/DC converter with decoupled control’, IEEE Trans. Ind. Appl., 2017, 54, pp. 722731.
    34. 34)
      • 34. Ganjavi, A., Ghoreishy, H., Ahmad, A.A.: ‘A novel single-input dual-output three-level DC–DC converter’, IEEE Trans. Ind. Electron., 2018, 65, (10), pp. 81018111.
    35. 35)
      • 35. Anand, S., Fernandes, B.G.: ‘Optimal voltage level for DC microgrids’. IECON 2010-36th Annual Conf. on IEEE Industrial Electronics Society, Glendale, AZ, USA, 2010, pp. 30343039.
    36. 36)
      • 36. Sannino, A., Postiglione, G., Bollen, M.H.J.: ‘Feasibility of a DC network for commercial facilities’. 2002. 37th IAS Annual Meeting. Conf. Record of the Industry Applications Conf., Pittsburgh, PA, USA, 2002, vol. 3, pp. 17101717.
    37. 37)
      • 37. Li, W., Mou, X., Zhou, Y., et al: ‘On voltage standards for DC home microgrids energized by distributed sources’. 2012 7th Int. Power Electronics and Motion Control Conf. (IPEMC), Harbin, China, 2012, vol. 3, pp. 22822286.
    38. 38)
      • 38. Czarkowski, D., Kazimierczuk, M.K.: ‘Energy-conservation approach to modeling PWM DC–DC converters’, IEEE Trans. Aerosp. Electron. Syst., 1993, 29, (3), pp. 10591063.
    39. 39)
      • 39. Kazimierczuk, M.K., Cravens, R.C.: ‘Closed-loop characteristics of voltage-mode-controlled PWM boost DC-DC converter with an integral-lead controller’, J. Circuits, Syst. Comput., 1994, 4, (4), pp. 429458.
    40. 40)
      • 40. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: ‘Control system design’, Upper Saddle River, vol. 13, 2001.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.6167
Loading

Related content

content/journals/10.1049/iet-rpg.2018.6167
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address