access icon free Linear magnetic gear with HTS bulks for wave energy conversion

This study proposes a linear magnetic gear (LMG). Unlike conventional LMGs, the proposed one purposely uses high-temperature superconducting (HTS) bulks replace permanent magnets (PMs). The high-speed mover of the magnetic gear is connected to the secondary of the linear permanent magnet generator (LPMG), which constitutes a direct-drive wave power system that converts wave energy into electrical energy. First, the LMG structure is presented according to the principle of magnetic field modulation, and the authors briefly analyzed the number of pole pairs of inner, outer, and ferromagnetic modulators. Second, they also established a finite element analysis model to analyze the performance of magnetic gear, including magnetic field distribution, radial air gap magnetic flux density, and force characteristic. An LMG with HTS bulks not only increased the radial air gap magnetic flux density but also improved the speed of LPMG. In conclusion, this experiment verifies the efficacy of direct-drive wave power take-off system and effectively converts wave energy into electrical energy.

Inspec keywords: linear machines; wave power generation; magnetic gears; magnetic fields; high-temperature superconductors; magnetic flux; permanent magnet generators; finite element analysis

Other keywords: high-temperature superconducting bulks; finite element analysis; force characteristic; electrical energy; radial air gap magnetic flux density; wave energy conversion; LMG structure; linear magnetic gear; ferromagnetic modulators; high-speed mover; magnetic field distribution; direct-drive wave power system; magnetic field modulation; HTS bulks; linear permanent magnet generator

Subjects: Finite element analysis; Linear machines; a.c. machines; d.c. machines; Wave power

References

    1. 1)
      • 23. Vajda, I., Gyore, A., Szalay, A., et al: ‘Improved design and system approach of a three phase inductive HTS fault current limiter for a 12 kVA synchronous generator’, IEEE Trans. Appl. Supercond., 2003, 13, (2), pp. 20002003.
    2. 2)
      • 2. Monk, K., Winands, V., Lopes, M.: ‘Chamber pressure skewness corrections using a passive relief valve system at the Pico oscillating water column wave energy plant’, Renew. Energy, 2018, 128, pp. 230240.
    3. 3)
      • 14. Johnson, M., Gardner, M.C., Toliyat, H.A., et al: ‘Design, construction, and analysis of a large scale inner stator radial flux magnetically geared generator for wave energy conversion’, IEEE Trans. Ind. Appl., 2018, 54, (4), pp. 33053314.
    4. 4)
      • 16. Ho, S.L., Wang, Q., Niu, S., et al: ‘A novel magnetic-geared tubular linear machine with Halbach permanent-magnet arrays for tidal energy conversion’, IEEE Trans. Magn., 2015, 51, (11), p. 8113604.
    5. 5)
      • 13. Li, W., Chau, K.T., Lee, C.H.T., et al: ‘A new linear magnetic gear with adjustable gear ratios and its application for direct-drive wave energy extraction’, Renew. Energy, 2017, 105, pp. 199208.
    6. 6)
      • 20. Tihanyi, V., Gyore, A., Vajda, I.: ‘Multiphysical finite element modeling of inductive type fault current limiters and self-limiting transformers’, IEEE Trans. Appl. Supercond., 2009, 19, (3), pp. 19221925.
    7. 7)
      • 6. Huang, L., Hu, M., Yu, H., et al: ‘Design and experiment of a direct-drive wave energy converter using outer-PM linear tubular generator’, IET Renew. Power Gener., 2017, 11, (3), pp. 353360.
    8. 8)
      • 12. Jing, H., Maki, N., Ida, T., et al: ‘Performance comparison of MW class tubular linear generators for wave energy conversion’, IEEE Trans. Appl. Supercond., 2017, 27, (6), p. 5203906.
    9. 9)
      • 5. Torres, F.R., Teixeira, P.R.F., Didier, E.: ‘A methodology to determine the optimal size of a wells turbine in an oscillating water column device by using coupled hydro-aerodynamic models’, Renew. Energy, 2018, 121, pp. 918.
    10. 10)
      • 21. Farhadi, M., Heydari, H.: ‘Rational approach for self-limiting current injection transformers confirmed by coupled electromagnetic – thermal FEM simulation’, Supercond. Sci. Technol., 2011, 24, (7), p. 075021.
    11. 11)
      • 11. Jing, H., Maki, N., Ida, T., et al: ‘Electromechanical design of an MW class wave energy converter with an HTS tubular linear generator’, IEEE Trans. Appl. Supercond., 2018, 28, (4), p. 4902504.
    12. 12)
      • 24. Fujishiro, H., Ujiie, T., Mochizuki, H., et al: ‘Recent progress of bulk magnets magnetized by pulsed field’, IEEE Trans. Appl. Supercond., 2015, 25, (3), p. 6800104.
    13. 13)
      • 22. Heydari, H., Abrishami, A.A., Bidgoli, M.M.: ‘Comprehensive analysis for magnetic shield superconducting fault current limiters’, IEEE Trans. Appl. Supercond., 2013, 23, (5), p. 5604610.
    14. 14)
      • 18. Hardy, P., Cazzolato, B.S., Ding, B., et al: ‘A maximum capture width tracking controller for ocean wave energy converters in irregular waves’, Ocean Eng., 2016, 121, pp. 516529.
    15. 15)
      • 8. Liu, C., Haitao, Y.U., Minqiang, H.U., et al: ‘‘Application of permanent magnet tubular linear generators using direct-driver wave power generation take-off systems’’, Proc. CSEE, 2013, 33, (21), pp. 9098.
    16. 16)
      • 3. Ashlin, S.J., Sannasiraj, S.A., Sundar, V.: ‘Performance of an array of oscillating water column devices integrated with an offshore detached breakwater’, Ocean Eng., 2018, 163, pp. 518532.
    17. 17)
      • 19. Tomita, M., Murakami, M.: ‘High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K’, Nature, 2003, 421, pp. 517520.
    18. 18)
      • 10. Ba, L.J., Jin, J.X., Wu, Z.H., et al: ‘Conceptual design of an HTS wave linear generator’, IEEE Trans. Appl. Supercond., 2016, 26, (7), p. 5207906.
    19. 19)
      • 1. Islam, M.R., Guo, Y.G., Zhu, J.G., et al: ‘High-frequency magnetic-link medium-voltage converter for superconducting generator base high power density wind generation systems’, IEEE Trans. Appl. Supercond., 2014, 24, (5), p. 5202605.
    20. 20)
      • 4. Hashem, I., Hameed, H.S.A., Mohamed, M.H.: ‘An axial turbine in an innovative oscillating water column (OWC) device for sea-wave energy conversion’, Ocean Eng., 2018, 164, pp. 536562.
    21. 21)
      • 9. Liu, C., Yu, H., Liu, Q., et al: ‘Research on a double float system for direct drive wave power conversion’, IET Renew. Power Gener., 2017, 11, (7), pp. 10261032.
    22. 22)
      • 7. Liu, C., Yu, H., Hu, M., et al: ‘Research on a permanent magnet tubular linear generator for direct drive wave energy conversion’, IET Renew. Power Gener., 2014, 8, (3), pp. 281288.
    23. 23)
      • 15. Feng, N., Yu, H., Hu, M., et al: ‘A study on a linear magnetic-geared interior permanent magnet generator for direct-drive wave energy conversion’, Energies, 2016, 9, (7), p. 487.
    24. 24)
      • 17. Xiao, X., Huang, X., Kang, Q.: ‘A hill-climbing-method-based maximum-power-point-tracking strategy for direct-drive wave energy converters’, IEEE Trans. Ind. Electron., 2015, 63, (1), pp. 257267.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.6109
Loading

Related content

content/journals/10.1049/iet-rpg.2018.6109
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading