access icon free Circuit topology for piezoelectric transducers in a piezoelectric energy harvester

In order to maximise the power from a harvester including a great number of piezoelectric transducers (PZTs), the outputs of these transducers should be connected in a suitable way. Since each PZT can be thought of as a non-ideal source, it is also clear that direct serial connection or parallel connection of these PZTs will not be a very good strategy. In this study, a new circuit topology is proposed for the electric connection between PZTs in a harvester including a great number of PZTs. This proposed circuit topology at the same time presents an efficient rectification and regulation strategy for each PZT used. The process of rectification takes place with minimum voltage loss due to the structure of the proposed circuit topology. In addition, the output of the proposed circuit topology can be used directly to charge an energy storage unit in addition to being connected to the input of any interface circuit. An experimental setup was designed to compare the performance of circuit topology proposed in this study in the form of connection used commonly in the literature. With this experimental setup used, various connection forms and the proposed circuit topology were compared under the same conditions.

Inspec keywords: network topology; piezoelectric transducers; rectification; energy storage; energy harvesting

Other keywords: parallel connection; PZT; circuit topology; energy storage unit; electric connection; piezoelectric energy harvester; nonideal source; regulation strategy; piezoelectric transducers; rectification strategy; direct serial connection

Subjects: Energy harvesting; Energy harvesting; Piezoelectric devices

References

    1. 1)
      • 14. Li, Y.: ‘Simple techniques for piezoelectric energy harvesting optimization’, Electronics. INSA de Lyon, 2014. English. NNT: 2014ISAL0077.
    2. 2)
      • 4. Jeon, Y.B., Sood, R., Jeong, J.-H., et al: ‘MEMS power generator with transverse mode thin film PZT’, Sens. Actuators A, 2005, 122, (1), pp. 1622, ISSN 0924-4247.
    3. 3)
      • 9. Zhang, J., Fang, Z., Shu, C., et al: ‘A rotational piezoelectric energy harvester for efficient wind energy harvesting’, Sens. Actuators A, Phys., 2017, 262, pp. 123129.
    4. 4)
      • 21. Guyomar, D., Badel, A., Lefeuvre, E., et al: ‘Toward energy harvesting using active materials and conversion improvement by nonlinear processing’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2005, 52, (4), pp. 584595, doi: 10.1109/TUFFC.2005.1428041.
    5. 5)
      • 26. Jasim, A., Yesner, G., Wang, H., et al: ‘Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications’, Appl. Energy, 2018, 224, pp. 438447.
    6. 6)
      • 25. Lu, Q., Liu, L., Scarpa, F., et al: ‘A novel composite multi-layer piezoelectric energy harvester’, Compos. Struct., 2018, 201, pp. 121130.
    7. 7)
      • 24. Du, S., Jia, Y., Seshia, A.A.: ‘An efficient inductorless dynamically configured interface circuit for piezoelectric vibration energy harvesting’, IEEE Trans. Power Electron., 2017, 32, (5), pp. 35953609, doi: 10.1109/TPEL.2018.2873079.
    8. 8)
      • 22. Du, S., Jia, Y., Zhao, C., et al: ‘A passive design scheme to increase the rectified power of piezoelectric energy harvesters’, IEEE Trans. Ind. Electron., 2018, 65, (9), pp. 70957105.
    9. 9)
      • 10. Zhao, J., Yang, J., Lin, Z., et al: ‘An arc-shaped piezoelectric generator for multi-directional wind energy harvesting’, Sens. Actuators A, Phys., 2015, 236, pp. 173179.
    10. 10)
      • 27. https://www.multisim.com/content/LEDTBBtD6uwxqiuSDTN6gE/dogrultucu/open/, accessed 7 November 2018.
    11. 11)
      • 20. Peters, C., Kessling, O., Henrici, F., et al: ‘CMOS integrated highly efficient full wave rectifier’. 2007 IEEE Int. Symp. on Circuits and Systems, New Orleans, LA, 2007, pp. 24152418, doi: 10.1109/ISCAS.2007.377947.
    12. 12)
      • 18. Szarka, G.D., Stark, B.H., Burrow, S.G.: ‘Review of power conditioning for kinetic energy harvesting systems’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 803815, doi: 10.1109/TPEL.2011.2161675.
    13. 13)
      • 1. Dineva, P.S., Gross, D., Müller, R., et al: ‘Dynamic fracture of piezoelectric materials’, Solid mechanics and its applications, vol. 212 (Springer International Publishing, Switzerland, 2014), doi: 10.1007/978-3-319-03961-9_2.
    14. 14)
      • 17. Hashemi, S., Sawan, M., Savaria, Y.: ‘A novel low-drop CMOS active rectifier for RF-powered devices: experimental results’, Microelectron. J., 2009, 40, (11), pp. 15471554.
    15. 15)
      • 16. Ramadass, Y., Chandrakasan, A.: ‘An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and share inductor’, IEEE J. Solid-State Circuit, 2010, 45, (1), pp. 189204.
    16. 16)
      • 7. Chen, G., Meng, Q., Fu, H., et al: ‘Development and experiments of a micro piezoelectric vibration energy storage device’, Mech. Syst. Signal Process., 2013, 40, (1), pp. 377384.
    17. 17)
      • 23. Wang, W., Yang, T., Chen, X., et al: ‘Vibration energy harvesting using a piezoelectric circular diaphragm array’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2012, 59, (9), pp. 20222026.
    18. 18)
      • 13. Moheimani, S.O.R., Fleming, A.J.: ‘Piezoelectric transducers for vibration control and damping’ (Springer-Verlag, London, 2006).
    19. 19)
      • 3. Roundy, S., Wright, P.K., Rabaey, J.: ‘A study of low level vibrations as a power source for wireless sensor nodes’, Comput. Commun., 2003, 26, (11), pp. 11311144.
    20. 20)
      • 8. Akkaya Oy, S., Özdemir, A.E.: ‘Piezoelectric based low power wind generator design and testing’, Arab. J. Sci. Eng., 2018, 43, (6), pp. 27592767.
    21. 21)
      • 12. IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987, 1988.
    22. 22)
      • 2. Gautschi, G., Sensorics, P.: ‘Force strain pressure acceleration and acoustic emission sensors materials and amplifiers’ (Springer Science & Business Media, Zurich, Switzerland, 2013), ISNB 9783662047323.
    23. 23)
      • 5. Renaud, M., Karakaya, K., Sterken, T., et al: ‘Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters’, Sens. Actuators A, Phys., 2008, 145–146, pp. 380386.
    24. 24)
      • 6. Dai, X., Wen, Y., Li, P., et al: ‘Modeling, characterization and fabrication of vibration energy harvester using terfenol-D/PZT/terfenol-D composite transducer’, Sens. Actuators A, Phys., 2009, 156, (2), pp. 350358.
    25. 25)
      • 19. Sauer, C., Stanacevic, M., Cauwenberghs, G., et al: ‘Power harvesting and telemetry in CMOS for implant devices’, IEEE Trans. Circuits Syst. I, 2005, 52, (12), pp. 26052613.
    26. 26)
      • 15. Lefeuvre, E., Badel, A., Richard, C., et al: ‘A comparison between several vibration-powered piezoelectric generators for standalone systems’, Sens. Actuators A, Phys., 2006, 126, (2), pp. 405416.
    27. 27)
      • 11. Viet, N.V., Al-Qutayri, M., Liew, K.M., et al: ‘An octo-generator for energy harvesting based on the piezoelectric effect’, Appl. Ocean Res., 2017, 64, pp. 128134.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.6106
Loading

Related content

content/journals/10.1049/iet-rpg.2018.6106
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading