Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analysis and design considerations of an axial-flux dual-rotor consequent-pole Vernier-PM machine for direct-drive energy conversion systems

The Vernier permanent-magnet (VPM) machine is known as high-torque and low-speed drive solution suitable for direct-drive applications such as electric-vehicles and wind-turbines. This study presents a high-efficiency axial-flux VPM machine with dual-rotor of consequent-pole topology and one yoke-less concentrated-winding stator. The consequent-pole VPM machine is a special VPM structure that introduces high torque-density as the conventional-VPM machine incorporating a significantly lower volume of PM material. The proposed machine represents desirable features of higher efficiency, improved reliability and lower weight and axial-length compared to the traditional motor-gearbox approach. These advantages are achieved due to: dual-PM rotors for appropriate forming the magnetic flux lines and increasing torque-to-weight ratio, yokeless-stator for reducing flux path, concentrated winding with no overhang for reducing copper-loss, using rectangular-shaped copper conductors for increasing winding fill factor and selecting the core material from high-performance grain-oriented magnetic steel for reducing core-loss. After presenting the structure, the operating principles are discussed based on the magnetic flux behaviour and a quasi-3D magnetic-equivalent-circuit model is extracted. The accuracy of the analytical model is validated by comparing the results with the FE results. Finally, the effects of the design parameters on electro-magnetic performance are analytically investigated by studying a 10 kW machine.

References

    1. 1)
      • 19. Hasegawa, R.: ‘Applications of amorphous magnetic alloys’, Mater. Sci. Eng. A, 2004, pp. 9097.
    2. 2)
      • 24. Tong, W., Wang, S., Dai, S., et al: ‘A quasi 3-D magnetic equivalent circuit model of a double-sided axial flux permanent magnet machine considering local saturation’, IEEE Trans. Energy Convers., 2018, 33, pp. 21632173.
    3. 3)
      • 16. Li, D., Qu, R., Li, J., et al: ‘Analysis of torque capability and quality in Vernier permanent-magnet machines’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 125135.
    4. 4)
      • 6. Weiwei, G., Zhuoran, Z.: ‘Analysis and implementation of new ironless stator axial-flux permanent magnet machine with concentrated non-overlapping windings’, IEEE Trans. Energy Convers., 2018, early access.
    5. 5)
      • 28. Bash, M.L., Williams, J.M., Pekarek, S.D.: ‘Incorporating motion in mesh-based magnetic equivalent circuits’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 329338.
    6. 6)
      • 12. Xu, L., Liu, G., Zhao, W., et al: ‘High-performance fault tolerant Halbach permanent magnet Vernier machines for safety-critical applications’, IEEE Trans. Magn., 2016, 52, (7), pp. 14.
    7. 7)
      • 10. Kim, B., Lipo, T.A.: ‘Operation and design principles of a PM Vernier motor’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 36563663.
    8. 8)
      • 26. Bash, M.L., Pekarek, S.D.: ‘Analysis and validation of a population-based design of a wound-rotor synchronous machine’, IEEE Trans. Energy Convers., 2012, 27, (3), pp. 603614.
    9. 9)
      • 23. Gorginpour, H.: ‘Dual-stator consequent-pole Vernier PM motor with improved power factor’, IET Electr. Power Appl., 2019, 13, (5), pp. 652661.
    10. 10)
      • 4. Bumby, J.R., Martin, R., Mueller, M.A., et al: ‘Electromagnetic design of axial-flux permanent magnet machines’, IEE Proc., Electr. Power Appl., 2004, 151, (2), pp. 151160.
    11. 11)
      • 9. Fei, W., Luk, P.C.K., Jinupun, K.: ‘Design and analysis of high-speed coreless axial flux permanent magnet generator with circular magnets and coils’, IET Electr. Power Appl., 2010, 4, (9), pp. 739747.
    12. 12)
      • 29. Hemeida, A., Lehikoinen, A., Rasilo, P., et al: ‘A simple and efficient quasi-3D magnetic equivalent circuit for surface axial flux permanent magnet synchronous machines’, IEEE Trans. Ind. Electron., 2019, 66, pp. 83188333.
    13. 13)
      • 22. Gorginpour, H.: ‘Design modifications for improving modulation flux capability of consequent-pole Vernier-PM machine in comparison to conventional Vernier-PM machines’, Sci. Iranica, 2019, in press.
    14. 14)
      • 2. Delli Colli, V., Marignetti, F., Attaianese, C.: ‘Analytical and multiphysics approach to the optimal design of a 10-MW DFIG for direct-drive wind turbines’, IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 27912799.
    15. 15)
      • 20. Li, D., Qu, R., Lipo, T.A.: ‘High-power-factor Vernier permanent-magnet machines’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 36643674.
    16. 16)
      • 8. Aydin, M., Gulec, M.: ‘A new coreless axial flux interior permanent magnet synchronous motor with sinusoidal rotor segments’, IEEE Trans. Magn., 2016, 52, (7), pp. 14.
    17. 17)
      • 11. Zhao, W., Chen, D., Lipo, T.A., et al: ‘Dual airgap stator- and rotor-permanent magnet machines with spoke-type configurations using phase-group concentrated coil windings’, IEEE Trans. Ind. Appl., 2017, 53, (4), pp. 33273335.
    18. 18)
      • 25. Gorginpour, H., Jandaghi, B., Oraee, H., et al: ‘Magnetic equivalent circuit modelling of brushless doubly-fed induction generator’, IET Renew. Power Gener., 2014, 8, (3), pp. 334346.
    19. 19)
      • 21. Heller, B., Hamata, V.: ‘Harmonics field effects in induction machines’ (Elsevier Scientific Pub., Amsterdam, Netherlands, 1977).
    20. 20)
      • 15. Ho, S.L., Niu, S., Fu, W.N.: ‘Design and comparison of Vernier permanent magnet machines’, IEEE Trans. Magn., 2011, 47, (10), pp. 32803283.
    21. 21)
      • 18. Zou, T., Qu, R., Li, J., et al: ‘A consequent pole, dual rotor, axial flux Vernier permanent magnet machine’. Tenth Int. Conf. on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, 2015, pp. 19.
    22. 22)
      • 14. Zhu, X., Zhao, W., Zhu, J., et al: ‘A high power factor fault-tolerant Vernier permanent-magnet machine’, AIP. Adv., 2017, 7, (5), pp. 14.
    23. 23)
      • 5. Chen, Q., Liang, D., Gao, L., et al: ‘Hierarchical thermal network analysis of axial-flux permanent-magnet synchronous machine for electric motorcycle’, IET Electr. Power Appl., 2018, 12, (6), pp. 859866.
    24. 24)
      • 27. Bash, M.L., Pekarek, S.D.: ‘Modeling of salient-pole wound-rotor synchronous machines for population-based design’, IEEE Trans. Energy Convers., 2011, 26, (2), pp. 381392.
    25. 25)
      • 3. Mudhigollam, U.K., Choudhury, U., Hatua, K.: ‘High power density multiple output permanent magnet alternator’, IET Electr. Power Appl., 2018, 12, (4), pp. 494501.
    26. 26)
      • 7. Minaz, M.R., Celebi, M.: ‘Design and analysis of a new axial flux coreless PMSG with three rotors and double stators’, Results Phys., 2017, 7, pp. 183188.
    27. 27)
      • 1. Yin, X., Fang, Y., Pfister, P.D.: ‘High-torque-density pseudo-direct-drive permanent-magnet machine with less magnet’, IET Electr. Power Appl., 2018, 12, (1), pp. 3744.
    28. 28)
      • 17. Zou, T., Li, D., Qu, R., et al: ‘Analysis of a dual-rotor, toroidal-winding, axial-flux Vernier permanent magnet machine’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 19201930.
    29. 29)
      • 13. Xie, K., Li, D., Qu, R., et al: ‘A novel permanent magnet Vernier machine with Halbach array magnets in stator slot opening’, IEEE Trans. Magn., 2017, 53, (6), pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.6104
Loading

Related content

content/journals/10.1049/iet-rpg.2018.6104
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address