access icon free Renewable energy: evaluation of low energy demand pre-treatments to optimise methane production from microalgae

Anaerobic digestion (AD) of microalgae is a sustainable process to produce methane-rich biogas for bioenergy production. However, the rigid cell walls of microalgae protect them against the attack from hydrolytic bacteria, and consequently prevent efficient biodegradability and lower methane production. In this study, the effects of low energy demand enzymatic and low-temperature thermo-alkaline pre-treatments on microalgae AD were investigated in batch biochemical methane potential tests. The results found that methane yields were significantly enhanced by both pre-treatments. Microalgae Chlorella vulgaris (C. vulgaris) after enzymatic pre-treatment enhanced methane yields the most, by 22–162%, whilst C. vulgaris pre-treated by thermo-alkaline pre-treatment improved methane yields by 4–26%. In enzymatic pre-treatment, C. vulgaris pre-treated with mixed enzymes showed higher methane yields compared to single enzymes. In low-temperature thermo-alkaline pre-treatment, the level of enhancement in methane yields depended on the alkaline dosage and pre-treatment temperature, but the high alkaline dosages were associated with limitations such as a prolonged lag phase in the digestion process. From an energy viewpoint, both pre-treatments showed positive energy balances for the majority of experimental conditions, and therefore both pre-treatments are considered to be energetically efficient methods to pre-treat microalgae for methane production via AD.

Inspec keywords: biofuel; microorganisms; biotechnology; biodegradable materials; bioenergy conversion; heat treatment; enzymes; renewable materials

Other keywords: microalgae AD; pretreatment temperature; batch biochemical methane potential tests; lower methane production; renewable energy evaluation; thermo-alkaline pretreatment improved methane yields; low energy demand pretreatments; methane-rich biogas; low-temperature thermo-alkaline pretreatments; higher methane yields; enzymatic pretreatment enhanced methane yields; bioenergy production; low energy demand enzymatic

Subjects: Industrial processes; Biofuel and biomass resources; Products and commodities; Environmental issues; Heat treatment; Photosynthesis and bioenergy conversion; Engineering materials; Biotechnology industry; Fuel processing industry

References

    1. 1)
      • 42. Alvira, P., Negro, M.J., Ballesteros, M.: ‘Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw’, Bioresoure Technol., 2011, 102, (6), pp. 45524558.
    2. 2)
      • 49. Zhang, Y., Caldwell, G.S., Zealand, A.M., et al: ‘Anaerobic co-digestion of microalgae Chlorella vulgaris and potato processing waste: effect of mixing ratio, waste type and substrate to inoculum ratio’, Biochem. Eng. J., 2019, 143, pp. 91100.
    3. 3)
      • 6. Harun, R., Jason, W.S.Y., Cherrington, T., et al: ‘Exploring alkaline pre-treatment of microalgal biomass for bioethanol production’, Appl. Energy, 2011, 88, (10), pp. 34643467.
    4. 4)
      • 5. Chinnasamy, S., Bhatnagar, A., Claxton, R., et al: ‘Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium’, Bioresour. Technol., 2010, 101, (17), pp. 67516760.
    5. 5)
      • 7. Ebrahimian, A., Kariminia, H.-R., Vosoughi, M.: ‘Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater’, Renew. Energy, 2014, 71, pp. 502508.
    6. 6)
      • 21. Kumar, P., Barrett, D.M., Delwiche, M.J., et al: ‘Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production’, Ind. Eng. Chem. Res., 2009, 48, (8), pp. 37133729.
    7. 7)
      • 39. Serrano, A., Siles, J.A., Chica, A.F., et al: ‘Improvement of mesophilic anaerobic co-digestion of agri-food waste by addition of glycerol’, J. Environ. Manag., 2014, 140, pp. 7682.
    8. 8)
      • 22. Torres, M.L., Lloréns, M.D.C.E.: ‘Effect of alkaline pretreatment on anaerobic digestion of solid wastes’, Waste Manage., 2008, 28, (11), pp. 22292234.
    9. 9)
      • 41. Yang, Q., Luo, K., Li, X.-M., et al: ‘Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes’, Bioresoure Technol., 2010, 101, (9), pp. 29242930.
    10. 10)
      • 12. Demuez, M., Mahdy, A., Tomás-Pejó, E., et al: ‘Enzymatic cell disruption of microalgae biomass in biorefinery processes’, Biotechnol. Bioeng., 2015, 112, (10), pp. 19551966.
    11. 11)
      • 53. Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A., et al: ‘The challenge of enzyme cost in the production of lignocellulosic biofuels’, Biotechnol. Bioeng., 2012, 109, (4), pp. 10831087.
    12. 12)
      • 20. Feijoo, G., Soto, M., Mendez, R., et al: ‘Sodium inhibition in the anaerobic digestion process: antagonism and adaptation phenomena’, Enzyme Microb. Technol., 1995, 17, (2), pp. 180188.
    13. 13)
      • 46. Yen, H.-W., Brune, D.E.: ‘Anaerobic co-digestion of algal sludge and waste paper to produce methane’, Bioresoure Technol., 2007, 98, (1), pp. 130134.
    14. 14)
      • 38. Passos, F., García, J., Ferrer, I.: ‘Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass’, Bioresour. Technol., 2013, 138, pp. 7986.
    15. 15)
      • 15. Mahdy, A., Mendez, L., Blanco, S., et al: ‘Protease cell wall degradation of Chlorella vulgaris: effect on methane production’, Bioresoure Technol., 2014, 171, pp. 421427.
    16. 16)
      • 31. Angelidaki, I., Alves, M., Bolzonella, D., et al: ‘Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays’, Water Sci. Technol., 2009, 59, (5), pp. 927934.
    17. 17)
      • 4. Dębowski, M., Zieliński, M., Kisielewska, M., et al: ‘Anaerobic co-digestion of the energy crop Sida hermaphrodita and microalgae biomass for enhanced biogas production’, Int. J. Environ. Res., 2017, 11, (3), pp. 243250.
    18. 18)
      • 8. Zhao, B., Ma, J., Zhao, Q., et al: ‘Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production’, Bioresour. Technol., 2014, 161, pp. 423430.
    19. 19)
      • 51. Vanthoor-Koopmans, M., Wijffels, R.H., Barbosa, M.J., et al: ‘Biorefinery of microalgae for food and fuel’, Bioresoure Technol., 2013, 135, pp. 142149.
    20. 20)
      • 24. Ilavarasi, A., Mubarakali, D., Praveenkumar, R., et al: ‘Optimization of various growth media to freshwater microalgae for biomass production’, Biotechnology, 2011, 10, (6), pp. 540545.
    21. 21)
      • 27. Ometto, F., Quiroga, G., Psenicka, P., et al: ‘Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis’, Water Res., 2014, 65, pp. 350361.
    22. 22)
      • 36. Nielfa, A., Cano, R., Fdz-Polanco, M.: ‘Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge’, Biotechnol. Rep., 2015, 5, pp. 1421.
    23. 23)
      • 33. APHA.: ‘Standard methods for the examination of water and wastewater’, in Eaton, A.D., Clesceri, L.S., Greenberg, A.E. (Eds.): ‘American public health association, American water works association, water environment federation’ (APHA-AWWA-WEF, Washington DC, USA, 2005, 21st Edn.).
    24. 24)
      • 37. Patil, J.H., Raj, M.A., Muralidhara, P.L., et al: ‘Kinetics of anaerobic digestion of water hyacinth using poultry litter as inoculum’, Int. J. Environ. Sci. Dev., 2012, 3, (2), p. 94.
    25. 25)
      • 34. Nielsen, S.S.: ‘Phenol-sulfuric acid method for total carbohydrates’, in Nielsen, S.S. (Ed.): ‘Food analysis laboratory Manual’ (Springer US, Boston, MA, 2010), pp. 4753.
    26. 26)
      • 11. Safi, C., Zebib, B., Merah, O., et al: ‘Morphology, composition, production, processing and applications of Chlorella vulgaris: a review’, Renew. Sust. Energy Rev., 2014, 35, pp. 265278.
    27. 27)
      • 14. Festucci-Buselli, R.A., Otoni, W.C., Joshi, C.P.: ‘Structure, organization, and functions of cellulose synthase complexes in higher plants’, Braz. J. Plant Physiol., 2007, 19, (1), pp. 113.
    28. 28)
      • 13. Mahdy, A., Mendez, L., Ballesteros, M., et al: ‘Autohydrolysis and alkaline pretreatment effect on Chlorella vulgaris and Scenedesmus sp. Methane production’, Energy, 2014a, 78, pp. 4852.
    29. 29)
      • 1. OECD/IEA: Energy and Climate Change’, https://www.iea.org/publications/freepublications/publication/WEO2015SpecialReportonEnergyandClimateChange.pdf, accessed 29 July 2018.
    30. 30)
      • 47. Caporgno, M.P., Trobajo, R., Caiola, N., et al: ‘Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions’, Renew. Energy, 2015, 75, pp. 374380.
    31. 31)
      • 23. Liang, Y.-G., Zheng, Z., Luo, X.-Z., et al: ‘Lime pretreatment to improve methane production of smooth cordgrass (Spartina alterniflora)’, Chem. Eng. J., 2013, 217, pp. 337344.
    32. 32)
      • 43. Agbor, V.B., Cicek, N., Sparling, R., et al: ‘Biomass pretreatment: fundamentals toward application’, Biotechnol. Adv., 2011, 29, (6), pp. 675685.
    33. 33)
      • 45. Antonopoulou, G., Dimitrellos, G., Beobide, A.S., et al: ‘Chemical pretreatment of sunflower straw biomass: the effect on chemical composition and structural changes’, Waste Biomass Valorization, 2015, 6, (5), pp. 733746.
    34. 34)
      • 18. Cho, S., Park, S., Seon, J., et al: ‘Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production’, Bioresoure Technol., 2013, 143, pp. 330336.
    35. 35)
      • 48. Schwede, S., Kowalczyk, A., Gerber, M., et al: ‘Anaerobic co-digestion of the marine microalga Nannochloropsis salina with energy crops’, Bioresoure Technol., 2013, 148, pp. 428435.
    36. 36)
      • 10. Magdalena, J.A., Ballesteros, M., González-Fernandez, C.: ‘Efficient anaerobic digestion of microalgae biomass: proteins as a key macromolecule’, Molecules, 2018, 23, (5), p. 1098.
    37. 37)
      • 2. Ramanathan, V., Feng, Y.: ‘Air pollution, greenhouse gases and climate change: global and regional perspectives’, Atmos. Environ., 2009, 43, (1), pp. 3750.
    38. 38)
      • 44. Solé-Bundó, M., Carrère, H., Garfí, M., et al: ‘Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO)’, Algal Res., 2017, 24, pp. 199206.
    39. 39)
      • 16. González-Fernández, C., Sialve, B., Bernet, N., et al: ‘Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production’, Bioresoure Technol., 2012, 110, pp. 610616.
    40. 40)
      • 25. Choi, S.P., Nguyen, M.T., Sim, S.J.: ‘Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production’, Bioresoure Technol., 2010, 101, (14), pp. 53305336.
    41. 41)
      • 29. Abo-Shady, A.M., Mohamed, Y.A., Lasheen, T.: ‘Chemical composition of the cell wall in some green algae species’, Biologia Plantarum, 1993, 35, (4), pp. 629632.
    42. 42)
      • 35. Kralj, J.G., Munson, M.S., Ross, D.: ‘Total protein quantitation using the bicinchoninic acid assay and gradient elution moving boundary electrophoresis’, Electrophoresis, 2014, 35, (12–13), pp. 18871892.
    43. 43)
      • 32. Dechrugsa, S., Kantachote, D., Chaiprapat, S.: ‘Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure’, Bioresoure Technol., 2013, 146, pp. 101108.
    44. 44)
      • 9. Alaswad, A., Dassisti, M., Prescott, T., et al: ‘Technologies and developments of third generation biofuel production’, Renew. Sust. Energy Rev., 2015, 51, pp. 14461460.
    45. 45)
      • 17. Mendez, L., Mahdy, A., Timmers, R.A., et al: ‘Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments’, Bioresoure Technol., 2013, 149, pp. 136141.
    46. 46)
      • 19. Bohutskyi, P., Betenbaugh, M.J., Bouwer, E.J.: ‘The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains’, Bioresoure Technol., 2014, 155, pp. 366372.
    47. 47)
      • 30. Yamamoto, M., Kurihara, I., Kawano, S.: ‘Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae)’, Planta, 2005, 221, (6), pp. 766775.
    48. 48)
      • 26. Mahdy, A., Mendez, L., Ballesteros, M., et al: ‘Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition’, Energy Convers. Manage., 2014b, 85, pp. 551557.
    49. 49)
      • 40. Field, A.: ‘Discovering statistics using SPSS’ (SAGE Publications, London, 2009, 3rd edn.).
    50. 50)
      • 50. Zhang, Y., Caldwell, G.S., Sallis, P.J.: ‘Semi-continuous anaerobic co-digestion of marine microalgae with potato processing waste for methane production’, J. Environ. Chem. Eng., 2019, 7, (1), p. 102917.
    51. 51)
      • 52. Liu, G., Zhang, J., Bao, J.: ‘Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling’, Bioprocess Biosyst. Eng., 2016, 39, (1), pp. 133140.
    52. 52)
      • 3. Ellabban, O., Abu-Rub, H., Blaabjerg, F.: ‘Renewable energy resources: current status, future prospects and their enabling technology’, Renew. Sust. Energy Rev., 2014, 39, pp. 748764.
    53. 53)
      • 28. Alzate, M.E., Muñoz, R., Rogalla, F., et al: ‘Biochemical methane potential of microalgae biomass after lipid extraction’, Chem. Eng. J., 2014, 243, pp. 405410.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.6080
Loading

Related content

content/journals/10.1049/iet-rpg.2018.6080
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading