Structural responses suppression for a barge-type floating wind turbine with a platform-based TMD

Structural responses suppression for a barge-type floating wind turbine with a platform-based TMD

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As the ocean environment is more complex than the land environment, the offshore wind turbines especially the floating types generally suffer significant structural loads. In this study, in order to carry out the accurate simulation and analysis for the dynamic characteristics of a barge-type floating wind turbine, a detailed turbine model including the complete drivetrain is constructed. Additionally, the structural responses of the wind turbine are mitigated by using a single-degree of freedom tuned mass damper (TMD) system installed in the platform. In order to achieve the ideal response mitigation effect, a parametric study on the TMD configuration is carried out. Based on a new co-simulation model combining multi-body model and external control codes, the turbine model coupled with the TMD is then simulated under the combined wind and wave. The results demonstrate the effectiveness of the designed TMD on mitigating the structural responses of the barge-type floating wind turbine.


    1. 1)
      • 1. Petković, D., Ćojbašić, Ž., Nikolić, V., et al: ‘Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission’, Energy, 2014, 64, pp. 868874.
    2. 2)
      • 2. Petković, D., Ab Hamid, S.H., Ćojbašić, Ž., et al: ‘Adapting project management method and ANFIS strategy for variables selection and analyzing wind turbine wake effect’, Nat. Hazards, 2014, 74, (2), pp. 463475.
    3. 3)
      • 3. Petković, D., Nikolić, V., Mitić, V.V., et al: ‘Estimation of fractal representation of wind speed fluctuation by artificial neural network with different training algorithms’, Flow Meas. Instrum., 2017, 54, pp. 172176.
    4. 4)
      • 4. Petković, D., Pavlović, N.T., Ćojbašić, Ž.: ‘Wind farm efficiency by adaptive neuro-fuzzy strategy’, Int. J. Electr. Power Energy Syst., 2016, 81, pp. 215221.
    5. 5)
      • 5. Nikolić, V., Mitić, V.V., Kocić, L., et al: ‘Wind speed parameters sensitivity analysis based on fractals and neuro-fuzzy selection technique’, Knowl. Inf. Syst., 2017, 52, (1), pp. 255265.
    6. 6)
      • 6. Petković, D., Ćojbašič, Ž., Nikolić, V.: ‘Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation’, Renew. Sust. Energy Rev., 2013, 28, pp. 191195.
    7. 7)
      • 7. Van, T.L., Nguyen, T.H., Lee, D.C.: ‘Advanced pitch angle control based on fuzzy logic for variable-speed wind turbine systems’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 578587.
    8. 8)
      • 8. Namik, H., Stol, K.A.: ‘Individual blade pitch control of floating offshore wind turbines’, Wind Energy, 2010, 13, (1), pp. 7485.
    9. 9)
      • 9. Sun, C., Jahangiri, V.: ‘Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper’, Mech. Syst. Signal Process., 2018, 105, pp. 338360.
    10. 10)
      • 10. Zhang, X., Sun, L., Sun, H., et al: ‘Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA’, J. Wind Eng. Ind. Aerodyn., 2016, 154, pp. 2133.
    11. 11)
      • 11. Tran, T.T., Kim, D.-H.: ‘The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine’, J. Wind Eng. Ind. Aerodyn., 2015, 147, pp. 104119.
    12. 12)
      • 12. Veers, P.: ‘Trends in the design, manufacturing and evaluation of wind turbine blades’, Wind Energy, 2003, 3, pp. 245259.
    13. 13)
      • 13. Jonkman, J., Matha, D.: ‘A quantitative comparison of the responses of three floating platform concepts’. European Offshore Wind 2009 Conf. and Exhibition, Stockholm, Sweden, 2009.
    14. 14)
      • 14. Mitchell, S.J., Lanquaye-Opoku, N., Modzelewski, H., et al: ‘Comparison of wind speeds obtained using numerical weather prediction models and topographic exposure indices for predicting windthrow in mountainous terrain’, For. Ecol. Manag., 2008, 254, (2), pp. 193204.
    15. 15)
      • 15. Michajłow, M., Szolc, T., Jankowski, Ł., et al: ‘Semi-active reduction of vibrations of periodically oscillating system’, Solid State Phenomena, 2016, 248, pp. 111118.
    16. 16)
      • 16. Altunişik, A.C., Yetişken, A., Kahya, V.: ‘Experimental study on control performance of tuned liquid column dampers considering different excitation directions’, Mech. Syst. Signal Process., 2018, 102, pp. 5971.
    17. 17)
      • 17. Singh, M.P., Matheu, E.E., Suarez, L.E.: ‘Active and semi-active control of structures under seismic excitation’, Earthquake Eng. Struct. Dynam., 1997, 26, (2), pp. 193213.
    18. 18)
      • 18. Zhao, H., Gao, Z., Wang, Z., et al: ‘Shaking table test on vibration control effect of a monopole offshore wind turbine with a tuned mass damper’, Wind Energy, 2018, 21, (12), pp. 13091328.
    19. 19)
      • 19. Stewart, G.M.: ‘Load reduction of floating wind turbines using tuned mass dampers’. Master thesis, University of Massachusetts, Amherst, 2012.
    20. 20)
      • 20. Stewart, G., Lackner, M.: ‘Offshore wind turbine load reduction employing optimal passive tuned mass damping systems’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 10901104.
    21. 21)
      • 21. Si, Y., Karimi, H.R., Gao, H.: ‘Modelling and optimization of a passive structural control design for a spar-type floating wind turbine’, Eng. Struct., 2014, 69, (9), pp. 168182.
    22. 22)
      • 22. Lackner, M.A., Rotea, M.A.: ‘Passive structural control of offshore wind turbines’, Wind Energ., 2011, 14, pp. 373388.
    23. 23)
      • 23. Zhang, Q.Y., Zhou, H.: ‘Dynamic response analysis of wind turbine with tuned mass damper under typhoon conditions’, Adv. Mater. Res., 2014, 945–949, pp. 600606.
    24. 24)
      • 24. Zuo, H., Kaiming, B., Hong, H..: ‘Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards’, Eng. Struct., 2017, 141, pp. 303315.
    25. 25)
      • 25. Peeters, J., Vandepitte, D., Sas, P.: ‘Analysis of internal drive train dynamics in a wind turbine’, Wind Energy J., 2006, 9, pp. 141161.
    26. 26)
      • 26. Peeters, J.: ‘Simulation of dynamic drive train loads in a wind turbine’. PhD Thesis, Katholieke Universiteit Leuven, Department of Mechanical Engineering, Division PMA, Belgium, 2006.
    27. 27)
      • 27. Jonkman, J., Buhl, J.M.: ‘Fast user's guide’. National Renewable Energy Laboratory, Golden, CO, USA, 2005.
    28. 28)
      • 28. Garrad Hassan & Partners Ltd.: ‘Bladed theory manual’, Version 4.2, 2011.
    29. 29)
      • 29. Hansen, A.D., Michalke, G.: ‘Fault ride-through capability of DFIG wind turbines’, Renew. Energy, 2007, 32, pp. 15941610.
    30. 30)
      • 30. Boukhezzar, B., Lupu, L., Siguerdidjane, H., et al: ‘Multivariable control strategy for variable speed, variable pitch wind turbines’, Renew. Energy, 2007, 32, pp. 12731287.
    31. 31)
      • 31. Helsen, J., Vanhollebeke, F., Marrant, B., et al: ‘Multi-body modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes’, Renew. Energy, 2011, 36, pp. 30983113.
    32. 32)
      • 32. Jonkman, J., Butterfield, S., Musial, W., et al: ‘Definition of a 5-mw reference wind turbine for offshore system development’. Tech. Rep. TP 500-38060, Nat. Renew. Energy Lab., Golden, CO, USA, 2008.
    33. 33)
      • 33. Matha, D.: ‘Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts’. Technical Report, NREL/SR-500-45891, National Renewable Energy Laboratory (NREL), Golden, CO, USA, 2010.
    34. 34)
      • 34. Jin, X., Li, L., Ju, W.B.: ‘Multi-body modelling of varying complexity for dynamic analysis of large-scale wind turbines’, Renew. Energy, 2016, 90, pp. 336351.
    35. 35)
      • 35. SIMPACK AG., 2016 SIMPACK Documentation, 2016.
    36. 36)
      • 36. Jonkman, J.: ‘Influence of control on the pitch damping of a floating wind turbine’. Proc. 46th AIAA Aerospace Science Meeting Exhibit., Reno, NV, USA, January 2008, pp. 115.
    37. 37)
      • 37. Moré, J.J.: ‘The Levenberg–Marquardt algorithm: implementation and theory’, Numerical analysis, (Springer, Berlin, Germany, 1978), pp. 105116.
    38. 38)
      • 38. Ranganathan, A.: ‘The Levenberg–Marquardt algorithmGeorgia Institute of Technology, Atlanta, GA, 2004.
    39. 39)
      • 39. Hansen, M.H., Hansen, A., Larsen, T.J., et al: ‘Control design for a pitch-regulated variable-speed wind turbine’. Report #Riso-R-1500(EN), Riso National Laboratory, Roskilde, Denmark, 2005.
    40. 40)
      • 40. Garrad Hassan & Partners Ltd: ‘International electrotechnical commission standard on wind turbines. Part 3: design requirements for offshore wind turbines’, 2009.
    41. 41)
      • 41. Li, Y., Castro, A.M., Martin, J.E., et al: ‘Coupled computational fluid dynamics/multibody dynamics method for wind turbine aero-servo-elastic simulation including drivetrain dynamics’, Renew. Energy, 2017, 101, pp. 10371051.

Related content

This is a required field
Please enter a valid email address