http://iet.metastore.ingenta.com
1887

Assessment of induced voltages in common and differential-mode for a PV module due to nearby lightning strikes

Assessment of induced voltages in common and differential-mode for a PV module due to nearby lightning strikes

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nearby lightning strikes are prone to induce overvoltage transients in photovoltaic (PV) modules and in their power conditioning circuitry, which can permanently damage the PV system. Therefore, it becomes important to establish a method for accurate assessment of such transients. To this aim, the authors propose a three-dimensional (3D) semi-analytical numerical method to study the electromagnetic transients caused in PV modules by nearby lightning strikes. The approach bases on a semi-analytical expression of the magnetic vector potential generated by a geometrically complex lightning channel. The proposed method is able to calculate the transient overvoltage in a PV module, both in common and differential-mode, taking also into account capacitive and inductive couplings between the internal circuit and the PV metallic frame. Both modes are required to design the surge protective devices (SPDs) in PV power systems. Comparing to the models in literature, the proposed approach explicitly considers the complex geometry of the lightning channel. Statistical analysis allows assessing the impact of channel geometry by randomly generating a number of likely lightning paths. Results show that the lightning-induced overvoltage in a PV module is highly dependent on factors such as distance to the lightning channel and lightning channel geometry.

References

    1. 1)
      • 1. DEHN: ‘Lightning and surge protection for free field PV power plants’ (DEHN, UK, 2014), p. 15.
    2. 2)
      • 2. Hernandez, J.C., Vidal, P.G., Jurado, F.: ‘Lightning and surge protection in photovoltaic installations’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 19611971.
    3. 3)
      • 3. Uman, M.A.: ‘All about lightning’ (Dover, Toronto, 1986), pp. 1158.
    4. 4)
      • 4. Ahmad, N.I., Ab-Kadir, M.Z.A., Izadi, M., et al: ‘Lightning protection on photovoltaic systems: a review on current and recommended practices’, Renew. Sust. Energy Rev., 2018, 82, (1), pp. 16111619.
    5. 5)
      • 5. Häberlin, H.: ‘Interference voltages induced by magnetic fields of simulated lightning currents in PV modules and arrays’. Proc. 17th European Photovoltaic Solar Energy Conf., Munich, Germany, 2001, pp. 23432346.
    6. 6)
      • 6. Becker, H.: ‘Lightning and overvoltage protection in photovoltaic and solar thermal systems’ (TÜV Rheinland, Germany, 2000).
    7. 7)
      • 7. Belik, M.: ‘PV panels under lightning conditions’. Proc. 15th Int. Scientific Conf. on Electric Power Engineering, Brno, Czech Republic, 2014, pp. 367370.
    8. 8)
      • 8. Jiang, T., Grzybowski, S.: ‘Electrical degradation of photovoltaic modules caused by lightning induced voltage’. Proc. 2014 IEEE Electrical Insulation Conf., Philadelphia, PA, USA, 2014, pp. 107110.
    9. 9)
      • 9. NEDO: ‘Analysis and evaluation of lightning damage condition and damage decrease countermeasure technique of lightning damage for PV systems’, 2009.
    10. 10)
      • 10. CIGRE WG C4.408: ‘Lightning protection of low-voltage networks’. CIGRE Technical Brochure, 2013.
    11. 11)
      • 11. Yang, H., Liu, X.: ‘Design of PV charge and discharge controller in insulator monitoring system’. Proc. 2011 2nd Int. Conf. on Artificial Intelligence, Management Science and Electronic Commerce, Dengleng, 2011, pp. 20392042.
    12. 12)
      • 12. IEC Std. 61000-4-5: ‘Electromagnetic compatibility—part 4–5: testing and measurement techniques—surge immunity test’, 2014.
    13. 13)
      • 13. IEC Std. 60664-1: ‘Insulation coordination for equipment within LV systems—part 1: principles, requirements and tests’, 2007.
    14. 14)
      • 14. IEC Std. 61730-2: ‘PV module safety qualification—part 2: requirements for testing’, 2016.
    15. 15)
      • 15. Funabashi, T.: ‘Integration of distributed energy resources in power systems implementation, operation and control’ (Toshihisa Funabashi, Japan, 2016).
    16. 16)
      • 16. Dechthummarong, C., Thepa, S., Chenvidhya, D., et al: ‘Lightning impulse test of field-aged PV modules and simulation partial discharge within MATLAB’. Proc. 9th Int. Conf. on Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology, Phetchaburi, 2012, pp. 14.
    17. 17)
      • 17. Méndez, Y., Acosta, I., Rodriguez, J.C., et al: ‘Effects of the PV-generator's terminals connection to ground on electromagnetic transients caused by lightning in utility scale PV-plants’. Proc. 33rd Int. Conf. on Lightning Protection, Estoril, 2016, pp. 18.
    18. 18)
      • 18. Kern, A., Krichel, F.: ‘Considerations about the lightning protection system of mains independent renewable energy hybrid-systems. Practical experiences’, J. Electrost., 2004, 60, pp. 257263.
    19. 19)
      • 19. Sekioka, S.: ‘Lightning protections of renewable energy generation systems’, in ‘Integration of distributed energy resources in power systems’ (Academic Press, London, UK, 2016), pp. 193228.
    20. 20)
      • 20. Zaini, N.H., Kadir, M.Z.A.Ab., Radzi, M.A.M, et al: ‘Lightning surge analysis on a large scale grid-connected solar photovoltaic system’, Energies, 2017, 10, (12), p. 2149.
    21. 21)
      • 21. Davidson, D.B.: ‘A review of important recent developments in full-wave CEM for RF and microwave engineering’. Proc. 2004 3rd Int. Conf. on Computational Electromagnetics and Its Applications, Beijing, 2004, pp. PS/1PS/4.
    22. 22)
      • 22. Oufi, E., Alfuhaid, A., Saied, M.: ‘Transient analysis of lossless singlephase nonuniform transmission lines’, IEEE Trans. Power Deliv., 1994, 9, (3), pp. 16941700.
    23. 23)
      • 23. Zou, J., Lee, J., Ji, Y., et al: ‘Transient simulation model for a lightning protection system using the approach of a coupled transmission line network’, IEEE Trans. Electromagn. Compat., 2007, 49, (3), pp. 614622.
    24. 24)
      • 24. Townbridge, C.W., Sykulski, J.K.: ‘Some key developments in computational electromagnetics and their attribution’, IEEE Antennas Propag. Mag., 2006, 42, (6), pp. 503508.
    25. 25)
      • 25. Harrington, R.F.: ‘Field computation by moment methods’ (Macmillan, New York, 1968).
    26. 26)
      • 26. Wang, S., He, J., Zhang, B., et al: ‘A time-domain multiport model of thin-wire system for lightning transient simulation’, IEEE Trans. Electromagn. Compat., 2010, 52, (1), pp. 128135.
    27. 27)
      • 27. Wang, S., He, J., Zhang, B., et al: ‘Time-domain simulation of small thin-wire structures above and buried in lossy ground using generalized modified mesh current method’, IEEE Trans. Power Deliv., 2011, 26, pp. 369377.
    28. 28)
      • 28. Jin, J.M.: ‘The finite element method in electromagnetics’ (John Willey & Sons, Inc., New York, 2002, 2nd edn.).
    29. 29)
      • 29. Volakis, J.L., Chatterjee, A., Kempel, L.C.: ‘Finite element method for electromagnetics’ (IEEE Press, Oxford University Press, UK, 1997).
    30. 30)
      • 30. Yee, K.S.: ‘Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media’, IEEE Antennas Propag. Mag., 1966, 14, pp. 302307.
    31. 31)
      • 31. Sullivan, D.M.: ‘Electromagnetic simulation using the FDTD method’ (Wiley - IEEE Press, UK, 2000).
    32. 32)
      • 32. Poljak, D., Brebbia, C.A.: ‘Boundary element methods for electrical engineers’ (WIT Press, Boston, 2005).
    33. 33)
      • 33. Ishii, M., Baba, Y.: ‘Numerical electromagnetic field analysis of tower surge response’, IEEE Trans. Power Deliv., 1997, 12, (1), pp. 483488.
    34. 34)
      • 34. Baba, Y., Rakov, V.A.: ‘Voltages induced on an overhead wire by lightning strikes to a nearby tall grounded object’, IEEE Trans. Electromagn. Compat., 2006, 48, (1), pp. 212224.
    35. 35)
      • 35. Noda, T., Yokoyama, S.: ‘Development of surge simulation code based on finite-difference time-domain approximation of Maxwell's equations’. Proc. 2014 Int. Power Electronics Conf., Hiroshima, 2014, pp. 15.
    36. 36)
      • 36. Noda, T., Tatematsu, A., Yokoyama, S.: ‘Improvements of an FDTD based surge simulation code and its application to the lightning overvoltage calculation of a transmission tower’, Electr. Power Syst. Res., 2007, 77, (11), pp. 14951500.
    37. 37)
      • 37. Rubinstein, M., Uman, M.A.: ‘Methods for calculating the electromagnetic fields from a known source distribution: application to lightning’, IEEE Trans. Electromagn. Compat., 1989, 31, (2), pp. 183189.
    38. 38)
      • 38. Tu, Y., Zhang, C., Hub, J., et al: ‘Research on lightning overvoltages of solar arrays in a rooftop photovoltaic power system’, Electr. Power Syst. Res., 2013, 94, pp. 1015.
    39. 39)
      • 39. Charalambous, C.A., Kokkinos, N.D., Christofides, N.: ‘External lightning protection and grounding in large-scale photovoltaic applications’, IEEE Trans. Electromagn. Compat., 2014, 56, (2), pp. 427434.
    40. 40)
      • 40. Yamamoto, K., Takami, J., Okabe, N.: ‘Overvoltage on DC side of power conditioning system caused by lightning stroke to structure anchoring photovoltaic panels’, IEEJ Trans. Power Energy, 2012, 132-B, (11), pp. 903913.
    41. 41)
      • 41. Hossain, A., Ahmed, R.: ‘Analysis of indirect lightning phenomena on solar power system’, J. Electr. Eng., 2014, 21, (4), pp. 127133.
    42. 42)
      • 42. Benesova, Z., Haller, R., Birkl, J., et al: ‘Overvoltages in photovoltaic systems induced by lightning strikes’. Proc. 2012 Int. Conf. on Lightning Protection, Vienna, 2012, pp. 16.
    43. 43)
      • 43. Fuangfung, Y., Sinthusonthishat, S., Yutthagowith, P.: ‘A software tool for induced voltages and currents calculation caused by lightning electromagnetic field in PV systems’. Proc. 2015 12th Int. Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Hua Hin, 2015, pp. 14.
    44. 44)
      • 44. IEC 62305-4: ‘Protection against lightning – part 4: electrical and electronic systems within structures’, 2010.
    45. 45)
      • 45. Takada, T., Ishii, M.: ‘Lightning-induced voltages around PV panel on ground’. Proc. IEEJ Technical Meeting on HV Engineering, HV-11-90, Tokyo, Japan, 2011–12(In Japanese).
    46. 46)
      • 46. Azhari, M.E.: ‘Lightning-induced voltage on DC power line of PV panel’. Masters dissertation, The University of Tokyo, 2013.
    47. 47)
      • 47. Kokkinos, N., Christofide, N., Charalambous, C.: ‘Lightning protection practice for large-extended photovoltaic installations’. Proc. 2012 Int. Conf. on Lightning Protection, Vienna, 2012, pp. 15.
    48. 48)
      • 48. Sakai, K., Yamamoto, K.: ‘Lightning protection of photovoltaic power generation system: influence of grounding systems on overvoltages appearing on DC wirings’. Proc. 2013 Int. Symp. on Lightning Protection, Belo Horizonte, 2013, pp. 335339.
    49. 49)
      • 49. Hernandez, Y.M., Ioannidis, D, Ferlas, G, et al: ‘An experimental approach of the transient effects of lightning currents on the overvoltage protection system in MW-class photovoltaic plants. Lightning protection’. Proc. 2014 Int. Conf. on Lightning Protection, Shanghai, 2014, pp. 19721977.
    50. 50)
      • 50. Stern, H., Karner, H.C.: ‘Lightning induced EMC phenomena in photovoltaic modules’. Proc. 1993 Int. Symp. on Electromagnetic Compatibility, Dallas, TX, USA, 1993, pp. 442446.
    51. 51)
      • 51. Zhang, C., Tu, Y., Hu, J., et al: ‘Study of induced overvoltage on solar arrays in lightning’. Proc. 2011 7th Asia-Pacific Int. Conf. on Lightning, Chengdu, 2011, pp. 852857.
    52. 52)
      • 52. Petrarca, C., Minucci, A., Andreotti, A.: ‘On the influence of channel tortuosity on electric fields generated by lightning return strokes at close distance’, Prog. Electromagn. Res. B, 2017, 74, pp. 6175.
    53. 53)
      • 53. Hernández, J.C., Vidal, P.G., Medina, A.: ‘Characterization of the insulation and leakage currents of PV generators: relevance for human safety’, Renew. Energy, 2010, 35, (3), pp. 593601.
    54. 54)
      • 54. Dechthummarong, C., Chenvidhya, D., Jivacate, C., et al: ‘Experiment and simulation impulse partial discharge behavior in dielectric encapsulations of field-aged PV modules’. Proc. 2011 37th IEEE Photovoltaic Specialists Conf., Seattle, WA, 2011, pp. 31093112.
    55. 55)
      • 55. Sekioka, S.: ‘An experimental study of sparkover between a rod and a photovoltaic panel’. Proc. 2012 Int. Conf. on Lightning Protection, Vienna, Austria, 2012, pp. 15.
    56. 56)
      • 56. IEC Std. 62305-1: ‘Protection against lightning—part 1: general principles’, 2006.
    57. 57)
      • 57. Watt, A.D.: ‘ELF electric fields from thunderstorms’, J. Res. Natl. Bur. Stand.-D. Radio Propag., 1960, 64D, (5), pp. 425433.
    58. 58)
      • 58. Haus, H.A., Melcher, J.R.: ‘Electromagnetic fields and energy’ (Prentice Hall, UK, 1988).
    59. 59)
      • 59. Sakakibara, A.: ‘Calculation of induced voltages on overhead lines caused by inclined lightning studies’, IEEE Trans. Power Deliv., 1989, 4, pp. 683693.
    60. 60)
      • 60. Andreotti, A., Petrarca, C., Rakov, V.A., et al: ‘Calculation of voltages induced on overhead conductors by nonvertical lightning channels’, IEEE Trans. Electromagn. Compat., 2012, 54, (4), pp. 860870.
    61. 61)
      • 61. Andreotti, A., De Martinis, U., Petrarca, C., et al: ‘Lightning electromagnetic fields and induced voltages: influence of channel tortuosity’. General Assembly and Scientific Sympos. 2011 XXXth URSI, Istanbul, Turkey, 2011, art. no. 6050702.
    62. 62)
      • 62. Andreotti, A., Petrarca, C., Pierno, A.: ‘On the effects of channel tortuosity in lightning-induced voltages assessment’, IEEE Trans. Electromagn. Compat., 2015, 57, pp. 10961102.
    63. 63)
      • 63. Meredith, S., Earles, S., Kostanic, I.: ‘How lightning tortuosity affects the electromagnetic fields by augmenting their effective distance’, Prog. Electromagn. Res., 2010, 25, pp. 155169.
    64. 64)
      • 64. Petrarca, C.: ‘Geometrical and physical parameters affecting distant electric fields radiated by lightning return strokes’, Prog. Electromagn. Res. B, 2014, 58, pp. 167180.
    65. 65)
      • 65. Hill, R.D.: ‘Analysis of irregular paths of lighting channels’, J. Geophys. Res.-Atmos., 1968, 73, (6), pp. 19221929.
    66. 66)
      • 66. Lupo, G., Petrarca, C., Tucci, V., et al: ‘EM fields generated by lightning channels with arbitrary location and slope’, IEEE Trans. Electromagn. Compat., 2000, 42, pp. 3953.
    67. 67)
      • 67. Stratton, J.A.: ‘Electromagnetic theory’ (McGraw-Hill, New York, 1941).
    68. 68)
      • 68. Uman, M.A.: ‘Lightning return stroke electric and magnetic fields’, J. Geophys. Res., 1985, 90, (D4), pp. 61216130.
    69. 69)
      • 69. Ogata, K.: ‘Modern control engineering’ (Prentice Hall, New York, 1976).
    70. 70)
      • 70. Uman, M.A., Rakov, V.A.: ‘Lightning physics and effects’ (Cambridge University Press, UK, 2007).
    71. 71)
      • 71. Wang, J., Zhang, X.: ‘Double-exponential expression of lightning current waveforms’. Proc. 2006 4th Asia-Pacific Conf. on Environmental Electromagnetics, Dalian, 2006, pp. 320323.
    72. 72)
      • 72. Heidler, F., Cvetic, J., Stanic, B.: ‘Calculation of lightning current parameters’, IEEE Trans. Power Deliv., 1999, 14, pp. 399404.
    73. 73)
      • 73. IEC Std. 62305-2: ‘Protection against lightning – part 2: risk management’, 2016.
    74. 74)
      • 74. Chiariello, A. G., Formisano, A., Martone, R.: ‘A high-performance computing procedure for the evaluation of 3D coils inductance’, COMPEL, 2014, 34, (1), pp. 248260.
    75. 75)
      • 75. Grover, F.W.: ‘Inductance calculations’ (Dover Publications, New York, 1946).
    76. 76)
      • 76. Wade, C.I., Torihara, R., Sakoda, T., et al: ‘Numerical analysis of electrical characteristics of a PV module irradiated by an impulse light flash’, J. Int. Counc. Electr. Eng., 2018, 8, (1), pp. 813.
    77. 77)
      • 77. Application Note B1500A-14: ‘IV and CV characterizations of solar/photovoltaic cells using the B1500A’ (Agilent Technologies, Santa Clara, CA, USA, 2018), pp. 15.
    78. 78)
      • 78. Poon, J., Jain, P., Spanos, C., et al: ‘Photovoltaic condition monitoring using real-time adaptive parameter identification’. Proc. 2017 IEEE Energy Conversion Congress and Exposition, Cincinnati, OH, 2017, pp. 11191124.
    79. 79)
      • 79. Cotfas, D.T., Cotfas, P.A., Kaplanis, S.: ‘Methods and techniques to determine the dynamic parameters of solar cells: review’, Renew. Sust. Energy Rev., 2016, 61, pp. 213221.
    80. 80)
      • 80. Kim, K.A., Seo, G., Cho, B., et al: ‘Photovoltaic hot-spot detection for solar panel substrings using AC parameter characterization’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 11211130.
    81. 81)
      • 81. Pongklang, T., Chenvidhya, D., Kirtikara, K., et al: ‘Voltage and frequency dependent impedances of dye-sensitized solar cell’, Energy Procedia, 2014, 52, pp. 536540.
    82. 82)
      • 82. Chenvidhy, D., Kirtikar, K., Jivacate, C.: ‘PV module dynamic impedance and its voltage and frequency dependencies’, Sol. Energy Mater. Sol. Cells, 2005, 86, (2), pp. 243251.
    83. 83)
      • 83. ‘COMSOL Multiphysics® v. 5.2’. Available at http://www.comsol.com, accessed 1 October 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.6033
Loading

Related content

content/journals/10.1049/iet-rpg.2018.6033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address