access icon free Application of genetic algorithms and the cross-entropy method in practical home energy management systems

Home energy management systems (HEMSs) are important platforms to allow consumers the use of flexibility in their consumption to optimise the total energy cost. The optimisation procedure embedded in these systems takes advantage of the nature of the existing loads and the generation equipment while complying with user preferences such as air temperature comfort configurations. The complexity in finding the best schedule for the appliances within an acceptable execution time for practical applications is leading not only to the development of different formulations for this optimisation problem, but also to the exploitation of non-deterministic optimisation methods as an alternative to traditional deterministic solvers. This study proposes the use of genetic algorithms (GAs) and the cross-entropy method (CEM) in low-power HEMS to solve a conventional mixed-integer linear programming formulation to optimise the total energy cost. Different scenarios for different countries are considered as well as different types of devices to assess the HEMS operation performance, namely, in terms of outputting fast and feasible schedules for the existing devices and systems. Simulation results in low-power HEMS show that GAs and the CEM can produce comparable solutions with the traditional deterministic solver requiring considerably less execution time.

Inspec keywords: integer programming; linear programming; genetic algorithms; energy management systems; entropy

Other keywords: user preferences; optimisation problem; traditional deterministic solvers; nondeterministic optimisation methods; practical applications; air temperature comfort configurations; generation equipment; acceptable execution time; mixed-integer linear programming formulation; genetic algorithms; cross-entropy method; practical home energy management systems; total energy cost; low-power HEMS

Subjects: Optimisation techniques; Power system management, operation and economics

References

    1. 1)
      • 7. ‘Ministério do Ambiente, Ordenamento DO Territóio e Energia Decreto-Lei n.° 153/2014 de 20 de outubro’.
    2. 2)
      • 15. Beaudin, M., Zareipour, H., Schellenberg, A.: ‘A framework for modelling residential prosumption devices and electricity tariffs for residential demand response’, 2014.
    3. 3)
      • 33. Bahrami, S., Amini, M.H.: ‘A decentralized trading algorithm for an electricity market with generation uncertainty’, Appl. Energy, 2018, 218, pp. 520532.
    4. 4)
      • 10. Spall, J.C.: ‘Stochastic optimization’, 2004.
    5. 5)
      • 11. Adika, C.O., Wang, L.: ‘Autonomous appliance scheduling for household energy management’, IEEE Trans. Smart Grid, 2014, 5, pp. 673682.
    6. 6)
      • 31. Jia, L., Yu, Z., Murphy-Hoye, M.C., et al: ‘Multi-scale stochastic optimization for home energy management’. 2011 4th IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), San Juan, Puerto Rico, December 2011, pp. 113116.
    7. 7)
      • 32. Wu, X., Hu, X., Yin, X., et al: ‘Stochastic optimal energy management of smart home with PEV energy storage’, IEEE Trans. Smart Grid, 2018, 9, pp. 20652075.
    8. 8)
      • 24. Lee, J., Kim, H.-J., Park, G.-L., et al: ‘Energy consumption scheduler for demand response systems in the smart grid’, J. Inf. Sci. Eng., 2011, 27, pp. 197211.
    9. 9)
      • 34. Mohsenian-Rad, A.-H., Leon-Garcia, A.: ‘Optimal residential load control with price prediction in real-time electricity pricing environments’, IEEE Trans. Smart Grid, 2010, 1, pp. 120133.
    10. 10)
      • 27. Misra, S., Mondal, A., Banik, S., et al: ‘Residential energy management in smart grid: a Markov decision process-based approach’. 2013 IEEE Int. Conf. Green Computing Communications IEEE Internet Things IEEE Cyber, Physical Social Computing, Beijing, China, August 2013, pp. 11521157.
    11. 11)
      • 38. Botev, Z.I., Kroese, D.P., Rubinstein, R.Y., et al: ‘Chapter 3 – the cross-entropy method for optimization’, in Rao, C., Govindaraju, V. (Eds.): ‘Handbook of statistics’, vol. 31, (Elsevier, Amsterdam, Netherlands, 2013), pp. 3559.
    12. 12)
      • 28. Rubinstein, R.Y.: ‘Optimization of computer simulation models with rare events’, Eur. J. Oper. Res., 1997, 99, (1), pp. 89112.
    13. 13)
      • 36. Jayadev, V., Swarup, K.: ‘Optimization of microgrid with demand side management using genetic algorithm’. IET Conf. on Power in Unity: A Whole System Approach, Birmingham, UK, 2013, pp. 1.121.12.
    14. 14)
      • 42. ‘Precio voluntario para el pequeño consumidor’, February 2017. Available at https://www.esios.ree.es/es/pvpc.
    15. 15)
      • 13. Laurent, J.-C., Desaulniers, G., Malhame, R., et al: ‘A column generation method for optimal load management via control of electric water heaters’, IEEE Trans. Power Syst., 1995, 10, (3), pp. 13891400.
    16. 16)
      • 3. Heleno, M., Matos, M.A., Lopes, J.A.P., et al: ‘Estimating the flexible residential load using appliances availability’. 2014 IEEE 8th Int. Power Engineering and Optimization Conf. (PEOCO2014), Langkawi, Malaysia, March 2014, pp. 352357.
    17. 17)
      • 23. Kailas, A., Cecchi, V., Mukherjee, A.: ‘A survey of communications and networking technologies for energy management in buildings and home automation’, J. Comput. Netw. Commun., 2012, 2012, pp. 112.
    18. 18)
      • 4. Abreu, C., Rua, D., Machado, P., et al: ‘Advanced energy management for demand response and microgeneration integration’. 2018 Power Systems Computation Conf., Dublin, Ireland, June 2018, pp. 17.
    19. 19)
      • 20. Samadi, P., Mohsenian-Rad, H., Wong, V.W.S., et al: ‘Tackling the load uncertainty challenges for energy consumption scheduling in smart grid’, IEEE Trans. Smart Grid, 2013, 4, pp. 10071016.
    20. 20)
      • 17. Chen, Z., Wu, L., Fu, Y.: ‘Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization’, IEEE Trans. Smart Grid, 2012, 3, pp. 18221831.
    21. 21)
      • 18. Yu, T., Yu, T., Kim, D.S., et al: ‘Optimization of scheduling for home appliances in conjunction with renewable and energy storage resources’, Int. J. Smart Home, 2013, 7, pp. 261271.
    22. 22)
      • 37. Hu, X.-M., Zhan, Z.-H., Lin, Y., et al: ‘Multiobjective genetic algorithm for demand side management of smart grid’. 2013 IEEE Symp. on Computational Intelligence in Scheduling (CISched), Singapore, April 2013, pp. 1421.
    23. 23)
      • 6. Eid, C., Bollinger, L.A., Koirala, B., et al: ‘Market integration of local energy systems: is local energy management compatible with European regulation for retail competition?’, Energy, 2016, 114, pp. 913922.
    24. 24)
      • 30. Yu, Z., Jia, L., Murphy-Hoye, M.C., et al: ‘Modeling and stochastic control for home energy management’, IEEE Trans. Smart Grid, 2013, 4, pp. 22442255.
    25. 25)
      • 21. Ha, L., Ploix, S., Zamai, E., et al: ‘Tabu search for the optimization of household energy consumption’. 2006 IEEE Int. Conf. Information Reuse & Integration, Waikoloa Village, HI, USA, September 2006, pp. 8692.
    26. 26)
      • 2. Kohlhepp, P., Harb, H., Wolisz, H., et al: ‘Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: a review of international field studies’, Renew. Sust. Energy Rev., 2019, 101, pp. 527547.
    27. 27)
      • 29. de Boer, P.-T., Kroese, D.P., Mannor, S., et al: ‘A tutorial on the cross-entropy method’, Ann. Oper. Res., 2005, 134, pp. 1967.
    28. 28)
      • 14. Tiptipakorn, S., Lee, W.-J.: ‘A residential consumer-centered load control strategy in real-time electricity pricing environment’. 2007 39th North American Power Symp., Fargo, ND USA, September 2007, pp. 505510.
    29. 29)
      • 9. Kupzog, F., Roesener, C.: ‘A closer look on load management’. 2007 5th IEEE Int. Conf. Industrial Informatics, Vienna, Austria, 2007, pp. 11511156.
    30. 30)
      • 19. Hannah, L.A.: ‘Stochastic optimization’, 2014.
    31. 31)
      • 25. Costanzo, G.T., Zhu, G., Anjos, M.F., et al: ‘A system architecture for autonomous demand side load management in smart buildings’, IEEE Trans. Smart Grid, 2012, 3, pp. 21572165.
    32. 32)
      • 39. Fahimnia, B., Davarzani, H., Eshragh, A.: ‘Planning of complex supply chains: a performance comparison of three metaheuristic algorithms’, Comput. Oper. Res., 2018, 89, pp. 241252.
    33. 33)
      • 43. ‘Portal ERSE – Tarifas Reguladas em 2018’. Available at http://www.erse.pt/pt/electricidade/tarifaseprecos/2018/Paginas/default.aspx.
    34. 34)
      • 40. T. U. Darmstadt: ‘Tracebase’, February 2017. Available at https://www.tracebase.org/traces.
    35. 35)
      • 16. Dehnad, A., Shakouri, H.S.: ‘A novel model of intelligent electrical load management by goal programming for smart houses, respecting consumer preferences’, Energy Power Eng., 2013, 05, pp. 622627.
    36. 36)
      • 35. Rahmani-andebili, M., Shen, H.: ‘Energy scheduling for a smart home applying stochastic model predictive control’. 2016 25th Int. Conf. on Computer Communication and Networks (ICCCN), Waikoloa, Hawaii, USA, August 2016, pp. 16.
    37. 37)
      • 22. Huang, T., Liu, D.: ‘A self-learning scheme for residential energy system control and management’, Neural Comput. Appl., 2013, 22, pp. 259269.
    38. 38)
      • 1. Vijayapriya, T., Pralhadas Kothari, D.: ‘Smart grid: an overview’, Smart Grid Renew. Energy, 2011, 2, pp. 305311.
    39. 39)
      • 5. ‘The future of demand response in electricity distribution’. Available at https://www.accenture.com/t20170406T202722Z__w__/us-en/_acnmedia/PDF-48/Accenture_Future-Demand-Response-POV.pdf.
    40. 40)
      • 41. Heleno, M., Matos, M.A., Lopes, J.A.P.: ‘Availability and flexibility of loads for the provision of reserve’, IEEE Trans. Smart Grid, 2015, 6, pp. 667674.
    41. 41)
      • 26. Agnetis, A., de Pascale, G., Detti, P., et al: ‘Load scheduling for household energy consumption optimization’, IEEE Trans. Smart Grid, 2013, 4, pp. 23642373.
    42. 42)
      • 12. Adika, C.O., Wang, L.: ‘Smart charging and appliance scheduling approaches to demand side management’, Int. J. Electr. Power Energy Syst., 2014, 57, pp. 232240.
    43. 43)
      • 8. Heleno, M., Rua, D., Gouveia, C., et al: ‘Optimizing PV self-consumption through electric water heater modeling and scheduling’. 2015 IEEE Eindhoven PowerTech, Eindhoven, Netherlands, June 2015, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.6022
Loading

Related content

content/journals/10.1049/iet-rpg.2018.6022
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading