access icon free Optimal sizing of a wind/solar/battery/diesel hybrid microgrid based on typical scenarios considering meteorological variability

Microgrid systems, such as solar photovoltaic (PV) and wind turbine (WT), integrated with diesel generator can provide adequate energy to supply increased demands and are economically feasible for current and future use considering depletion of conventional sources. It is, thus, important to determine the appropriate sizes of PV, WT, diesel generator, and associated energy storage system (ESS) for efficient, economic, and reliable operation of electric power system in microgrid. Stochastic nature of intermittent renewable energy (RE) resources complicate their planning, integration, and operation of electric power system. Therefore, it is critical to generate typical scenarios of wind speed, irradiation, and load time series to reflect their stochastic characteristic for microgrid system planning and operation. In this study, a wind-irradiation-load typical scenarios generation method is proposed for optimal sizing RE resources of microgrid. The teaching-learning-based optimisation (TLBO) method is used to find the best configuration of the microgrid system. Simulation results show that scenarios generated by the proposed model have ability to approximate the original scenarios and reduce planning data effectively.

Inspec keywords: wind turbines; hybrid power systems; distributed power generation; diesel-electric power stations; time series; renewable energy sources; battery storage plants; photovoltaic power systems; diesel-electric generators; optimisation

Other keywords: efficient operation; stochastic nature; optimal sizing; intermittent renewable energy; increased demands; conventional sources; adequate energy; economic operation; associated energy storage system; stochastic characteristic; diesel generator; wind speed; ESS; teaching-learning-based optimisation method; wind/solar/battery/diesel hybrid microgrid; wind turbine; load time series; TLBO method; reliable operation; microgrid system planning; approximate the original scenarios; electric power system; meteorological variability; wind-irradiation-load typical scenarios generation method

Subjects: Diesel power stations and plants; Other power stations and plants; Distributed power generation; Optimisation techniques; Power system management, operation and economics; Wind power plants; Solar power stations and photovoltaic power systems; Other topics in statistics

References

    1. 1)
      • 26. Chen, Z., Wu, L., Fu, Y.: ‘Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 18221831.
    2. 2)
      • 19. Dufo-López, R., Bernal-Agustín, J.L., Yusta-Loyo, J.M., et al: ‘Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage’, Appl. Energy, 2011, 88, (11), pp. 40334041.
    3. 3)
      • 28. Xue, M., Zhao, B., Zhang, X., et al: ‘Integrated plan and evaluation of grid-connected microgrid’, Autom. Electr. Power Syst., 2015, 39, (3), pp. 613.
    4. 4)
      • 33. Ding, M., Xie, J., Pan, H., et al: ‘Typical sequential scenario analysis method for economic operation of microgrid’, Electr. Power Autom. Equip., 2017, 37, (4), pp. 1116.
    5. 5)
      • 9. Agbossou, K., Kolhe, M., Hamelin, J., et al: ‘Performance of a stand-alone renewable energy system based on energy storage as hydrogen’, IEEE Trans. Energy Convers., 2004, 19, (3), pp. 633640.
    6. 6)
      • 5. Nguyen, N.H., Nguyen-Duc, H., Nakanishi, Y.: ‘Optimal sizing of energy storage devices in wind-diesel systems considering load growth uncertainty’, IEEE Trans. Ind. Appl., 2018, 54, (3), pp. 19831991.
    7. 7)
      • 1. Hatziargyriou, N., Asano, H., Iravani, R., et al: ‘Microgrids’, IEEE Power Energy Mag., 2007, 5, (4), pp. 7894.
    8. 8)
      • 4. Takle, E.S., Shaw, R.H.: ‘Complimentary nature of wind and solar energy at a continental mid-latitude station’, Int. J. Energy Res., 1979, 3, (2), pp. 103112.
    9. 9)
      • 10. Erdinc, O., Uzunoglu, M.: ‘Optimum design of hybrid renewable energy systems: overview of different approaches’, Renew. Sustain. Energy Rev., 2012, 16, (3), pp. 14121425.
    10. 10)
      • 36. Kumar, K.M., Reddy, A.R.M.: ‘An efficient  k-means clustering filtering algorithm using density based initial cluster centers’, Inf. Sci., 2017, 418, pp. 286301.
    11. 11)
      • 12. Kaur, R., Krishnasamy, V., Kandasamy, N.K.: ‘Optimal sizing of wind–PV-based DC microgrid for telecom power supply in remote areas’, IET Renew. Power Gener., 2018, 12, (7), pp. 859866.
    12. 12)
      • 7. Wang, C., Nehrir, M.H.: ‘Power management of a stand-alone wind/photovoltaic/fuel cell energy system’, IEEE Trans. Energy Convers., 2008, 23, (3), pp. 957967.
    13. 13)
      • 25. Amrollahi, M.H., Bathaee, S.M.T.: ‘Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response’, Appl. Energy, 2017, 202, pp. 6677.
    14. 14)
      • 21. Borhanazad, H., Mekhilef, S., Ganapathy, V.G., et al: ‘Optimization of micro-grid system using MOPSO’, Renew. Energy, 2014, 71, (11), pp. 295306.
    15. 15)
      • 8. Kai, S., Brock, E.K.: ‘Stochastic energy source access management: infrastructure-integrative modular plant for sustainable hydrogen-electric co-generation’, Int. J. Hydrog. Energy, 2006, 31, (9), pp. 11291141.
    16. 16)
      • 18. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system’, Energy, 2016, 115, (1), pp. 10221041.
    17. 17)
      • 38. Rousseeuw, P.: ‘Silhouettes: a graphical aid to the interpretation and validation of cluster analysis’, J. Comput. Appl. Math., 1987, 20, (20), pp. 5365.
    18. 18)
      • 27. Wang, Y., Liu, Y., Kirschen, D.S.: ‘Scenario reduction with submodular optimization’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 24792480.
    19. 19)
      • 2. Stadler, M., Cardoso, G., Mashayekh, S., et al: ‘Value streams in microgrids: a literature review’, Appl. Energy, 2016, 162, pp. 980989.
    20. 20)
      • 11. Akram, U., Khalid, M., Shafiq, S.: ‘Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system’, IET Renew. Power Gener., 2018, 12, (1), pp. 7280.
    21. 21)
      • 13. Ramli, M.A.M., Bouchekara, H.R.E.H., Alghamdi, A.S.: ‘Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm’, Renew. Energy, 2018, 121, pp. 400411.
    22. 22)
      • 29. Morales, J.M., Pineda, S., Conejo, A.J., et al: ‘Scenario reduction for futures market trading in electricity markets’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 878888.
    23. 23)
      • 30. Bucciarelli, M., Paoletti, S., Vicino, A.: ‘A scenario reduction approach for optimal sizing of energy storage systems in power distribution networks’. IEEE, Conf. Decision and Control. IEEE, 2017, pp. 44974502.
    24. 24)
      • 37. https://en.wikipedia.org/w/index.php?title=Determining_the_number_of_clusters_in_a_data_set&action=edit&section=1.
    25. 25)
      • 23. Wu, M., Ren, X., Zhou, D., et al: ‘Optimal allocation method for capacity of power supply system in industrial park under new electricity market reform’, Autom. Electr. Power Syst., 2018, 42, (5), pp. 28.
    26. 26)
      • 20. Kellogg, W., Nehrir, M.H., Venkataramanan, G., et al: ‘Optimal unit sizing for a hybrid wind/photovoltaic generating system’, Electr. Power Syst. Res., 1996, 39, (1), pp. 3538.
    27. 27)
      • 15. Mohammadi, M., Hosseinian, S.H., Gharehpetian, G.B.: ‘GA-based optimal sizing of microgrid and DG units under pool and hybrid electricity markets’, Int. J. Electr. Power Energy Syst., 2012, 35, (1), pp. 8392.
    28. 28)
      • 32. Ding, M., Xie, J., Liu, X., et al: ‘The generation method and application of wind resources/load typical scenario set for evaluation of wind power grid integration’, Proc. CSEE, 2016, 36, (15), pp. 40644071.
    29. 29)
      • 3. Kaabeche, A., Belhamel, M., Ibtiouen, R.: ‘Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system’, Energy, 2011, 36, (2), pp. 12141222.
    30. 30)
      • 31. Han, L., Li, F., Zhou, E., et al: ‘The distributed energy optimization configuration of micro-grid based on cost-benefit’, Trans. China Electrotech. Soc., 2015, 30, (14), pp. 388396.
    31. 31)
      • 35. Rao, R.V., Savsani, V.J., Vakharia, D.P.: ‘Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems’, Comput.-Aided Des., 2011, 43, (3), pp. 303315.
    32. 32)
      • 22. Ghorbani, N., Kasaeian, A., Toopshekan, A., et al: ‘Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability’, Energy, 2017, 154, pp. 581591.
    33. 33)
      • 6. Celik, A.N.: ‘Techno-economic analysis of autonomous PV-wind hybrid energy systems using different sizing methods’, Energy Convers. Manage., 2003, 44, (12), pp. 19511968.
    34. 34)
      • 17. Kellogg, W.D., Nehrir, M.H., Venkataramanan, G., et al: ‘Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV systems’, IEEE Trans. Energy Convers., 1998, 13, (1), pp. 7075.
    35. 35)
      • 16. Dufo-López, R., Bernal-Agustín, J.L.: ‘Design and control strategies of PV-diesel systems using genetic algorithms’, Sol. Energy, 2005, 79, (1), pp. 3346.
    36. 36)
      • 34. Ma, X., Wu, Y., Fang, H., et al: ‘Optimal sizing of hybrid solar-wind distributed generation in an islanded microgrid using improved bacterial foraging algorithm’, Proc. CSEE, 2011, 31, (25), pp. 1725.
    37. 37)
      • 24. Erdinc, O., Paterakis, N.G., Pappi, I.N., et al: ‘A new perspective for sizing of distributed generation and energy storage for smart households under demand response’, Appl. Energy, 2015, 143, pp. 2637.
    38. 38)
      • 14. Dufo-López, R., Bernal-Agustín, J.L., Contreras, J.: ‘Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage’, Renew. Energy, 2007, 32, (7), pp. 11021126.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5944
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5944
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading