http://iet.metastore.ingenta.com
1887

Comparative analysis of MPPT algorithms bio-inspired by grey wolves employing a feed-forward control loop in a three-phase grid-connected photovoltaic system

Comparative analysis of MPPT algorithms bio-inspired by grey wolves employing a feed-forward control loop in a three-phase grid-connected photovoltaic system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

It is well-known that performance of photovoltaic (PV) systems can be severely deteriorated when PV arrays are subjected to partial shading conditions, once the traditional techniques used for maximum power point tracking (MPPT) could not operate in the global maximum power point (GMPP). Thus, to overcome this problem and achieve the GMPP, four MPPT techniques bio-inspired in the grey wolf optimisation (GWO) are presented. These MPPT techniques, which are named as GWO, GWO-Beta, GWO-IC (Incremental Conductance), and GWO-P&O (Perturb and Observe), are evaluated and compared to each other by employing a double-stage three-phase grid-connected PV system, which is composed of DC/DC converter and three-phase inverter. Commonly, the DC-bus voltage regulation of double-stage PV systems presents slow dynamic behaviour to avoid disturbances in the currents injected into the grid. As a result, MPPT algorithms suffer with this problem since they must be executed considering this condition. To overcome this problem, a feed-forward control loop (FFCL) is implemented to improve the DC-bus voltage regulation during abrupt solar irradiance changes, as well as accelerating the MPPT algorithms dynamics. By means of extensive experimental and simulation results, the performance and effectiveness of the four MPPT techniques, as well as the FFCL, are evaluated.

References

    1. 1)
      • 1. Blaabjerg, F., Teodorescu, R., Liserre, M., et al: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409.
    2. 2)
      • 2. Atwa, Y.M., El-Saadany, E.F., Salama, M.M.A., et al: ‘Optimal renewable resources mix for distribution system energy loss minimization’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 360370.
    3. 3)
      • 3. Senatla, M., Bansal, R.C.: ‘Review of planning methodologies used for determination of optimal generation capacity mix: the cases of high shares of PV and wind’, IET Renew. Power Gener., 2018, 12, (11), pp. 12221233.
    4. 4)
      • 4. Sáiz-Marín, E., Lobato, E., Egido, I.: ‘New challenges to wind energy voltage control. Survey of recent practice and literature review’, IET Renew. Power Gener., 2018, 12, (3), pp. 267278.
    5. 5)
      • 5. Bose, B.K.: ‘Power electronics, smart grid, and renewable energy systems’, Proc. IEEE, 2017, 105, (11), pp. 20112018.
    6. 6)
      • 6. Sajadian, S., Ahmadi, R.: ‘ZSI for PV systems with LVRT capability’, IET Renew. Power Gener., 2018, 12, (11), pp. 12861294.
    7. 7)
      • 7. Akar, F., Tavlasoglu, Y., Vural, B.: ‘Analysis and experimental verification of a multi-input converter for DC microgrid applications’, IET Power Electron., 2018, 11, (6), pp. 10091017.
    8. 8)
      • 8. Blaabjerg, F., Yang, Y., Yang, D., et al: ‘Distributed power-generation systems and protection’, Proc. IEEE, 2017, 105, (7), pp. 13111331.
    9. 9)
      • 9. Chen, G., Lewis, F.L., Feng, E.N., et al: ‘Distributed optimal active power control of multiple generation systems’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 70797090.
    10. 10)
      • 10. Li, Q., Wolfs, P.: ‘A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 13201333.
    11. 11)
      • 11. Xiao, W., Moursi, M.S.E., Khan, O., et al: ‘Review of grid-tied converter topologies used in photovoltaic systems’, IET Renew. Power Gener., 2016, 10, (10), pp. 15431551.
    12. 12)
      • 12. De Brito, M., Sampaio, L., Melo, G., et al: ‘Three-phase tri-state buck-boost integrated inverter for solar applications’, IET Renew. Power Gener., 2015, 9, (6), pp. 557565.
    13. 13)
      • 13. de Brito, M.A.G., Sampaio, L.P., Junior, L.G., et al: ‘Research on photovoltaics: review, trends and perspectives’. XI Brazilian Power Electronics Conf., Natal, Brazil, 2011, pp. 531537.
    14. 14)
      • 14. Jiang, S., Wan, C., Chen, C., et al: ‘Distributed photovoltaic generation in the electricity market: status, mode and strategy’, CSEE J. Power Energy Syst., 2018, 4, (3), pp. 263272.
    15. 15)
      • 15. de Brito, M.A.G., Galotto, L., Sampaio, L.P., et al: ‘Evaluation of the main MPPT techniques for photovoltaic applications’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 11561167.
    16. 16)
      • 16. Mastromauro, R.A., Liserre, M., Dell'Aquila, A.: ‘Control issues in single-stage photovoltaic systems: MPPT, current and voltage control’, IEEE Trans. Ind. Inf., 2012, 8, (2), pp. 241254.
    17. 17)
      • 17. Tang, L., Xu, W., Mu, C.: ‘Analysis for step-size optimisation on MPPT algorithm for photovoltaic systems’, IET Power Electron., 2017, 10, (13), pp. 16471654.
    18. 18)
      • 18. Zhu, W., Shang, L., Li, P., et al: ‘Modified hill climbing MPPT algorithm with reduced steady-state oscillation and improved tracking efficiency’, J. Eng., 2018, 2018, (17), pp. 18781883.
    19. 19)
      • 19. Zakzouk, N.E., Elsaharty, M.A., Abdelsalam, A.K., et al: ‘Improved performance low-cost incremental conductance PV MPPT technique’, IET Renew. Power Gener., 2016, 10, (4), pp. 561574.
    20. 20)
      • 20. Jeyaprabha, S.B., Selvakumar, A.I.: ‘Model-based MPPT for shaded and mismatched modules of photovoltaic farm’, IEEE Trans. Sustain. Energy, 2017, 8, (4), pp. 17631771.
    21. 21)
      • 21. Oliveira, F.M., Da Silva, S.A.O., Durand, F.R., et al: ‘Application of PSO method for maximum power point extraction in photovoltaic systems under partial shading conditions’. 2015 IEEE 13th Brazilian Power Electronics Conf. and 1st Southern Power Electronics Conf., COBEP/SPEC 2016, Fortaleza, Brazil, 2015, pp. 16.
    22. 22)
      • 22. Hu, K., Li, W., Wang, L., et al: ‘Topology and control strategy of power optimisation for photovoltaic arrays and inverters during partial shading’, IET Gener. Transm. Distrib., 2018, 12, (1), pp. 6271.
    23. 23)
      • 23. Liu, J., Li, J., Wu, J., et al: ‘Global MPPT algorithm with coordinated control of PSO and INC for rooftop PV array’, J. Eng., 2017, 2017, (13), pp. 778782.
    24. 24)
      • 24. Manickam, C., Raman, G.R., Raman, G.P., et al: ‘A hybrid algorithm for tracking of GMPP based on P&O and PSO with reduced power oscillation in string inverters’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 60976106.
    25. 25)
      • 25. da Silva, S.A.O., Sampaio, L.P., de Oliveira, F.M., et al: ‘Feed-forward DC-bus control loop applied to a single-phase grid-connected PV system operating with PSO-based MPPT technique and active power-line conditioning’, IET Renew. Power Gener., 2017, 11, (1), pp. 183193.
    26. 26)
      • 26. Bastidas-Rodriguez, J.D., Franco, E., Petrone, G., et al: ‘Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review’, IET Power Electron., 2014, 7, (6), pp. 13961413.
    27. 27)
      • 27. Jiang, L.L., Maskell, D.L., Patra, J.C.: ‘A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions’, Energy Build., 2013, 58, pp. 227236.
    28. 28)
      • 28. Tey, K.S., Mekhilef, S., Seyedmahmoudian, M., et al: ‘Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation’, IEEE Trans. Ind. Inf., 2018, 14, (10), pp. 43224333.
    29. 29)
      • 29. Lyden, S., Haque, M.E.: ‘A simulated annealing global maximum power point tracking approach for PV modules under partial shading conditions’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 41714181.
    30. 30)
      • 30. Ram, J.P., Rajasekar, N.: ‘A novel flower pollination based global maximum power point method for solar maximum power point tracking’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 84868499.
    31. 31)
      • 31. Choutapalli, H., Bharath, K.R., Kanakasabapathy, P.: ‘A review on advanced MPPT methods for SPV system under partial shaded conditions’. 2018 Int. Conf. on Control, Power, Communication and Computing Technologies (ICCPCCT), Kannur, India, 2018, pp. 305310.
    32. 32)
      • 32. Sundareswaran, K., Peddapati, S., Palani, S.: ‘MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies’, IEEE Trans. Energy Convers., 2014, 29, (2), pp. 463472.
    33. 33)
      • 33. Chaves, E.N., Reis, J.H., Coelho, E.A.A., et al: ‘Simulated annealing–MPPT in partially shaded PV systems’, IEEE Lat. Am. Trans., 2016, 14, (1), pp. 235241.
    34. 34)
      • 34. Mohanty, S., Subudhi, B., Ray, P.K.: ‘A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 181188.
    35. 35)
      • 35. Miyatake, M., Veerachary, M., Toriumi, F., et al: ‘Maximum power point tracking of multiple photovoltaic arrays: a PSO approach’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (1), pp. 367380.
    36. 36)
      • 36. Liu, Y., Huang, S., Huang, J., et al: ‘A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 10271035.
    37. 37)
      • 37. Kumar, S., Pal, N.S.: ‘Ant colony optimization for less power consumption and fast charging of battery in solar grid system’. 2017 4th IEEE Uttar Pradesh Section Int. Conf. on Electrical, Computer and Electronics (UPCON), Mathura, India, 2017, pp. 244249.
    38. 38)
      • 38. Ma, X., Jiandong, D., Xiao, W., et al: ‘Research of photovoltaic systems MPPT based on improved grey wolf algorithm under partial shading conditions’. 2018 2nd IEEE Conf. on Energy Internet and Energy System Integration (EI2), Beijing, China, 2018, pp. 16.
    39. 39)
      • 39. Sundareswaran, K., Vigneshkumar, V., Sankar, P., et al: ‘Development of an improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV system’, IEEE Trans. Ind. Inf., 2016, 12, (1), pp. 187200.
    40. 40)
      • 40. Ahmed, J., Salam, Z.: ‘An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions’, IEEE Trans. Sustain. Energy, 2018, 9, (3), pp. 14871496.
    41. 41)
      • 41. Mohanty, S., Subudhi, B., Ray, P.K.: ‘A grey wolf-assisted perturb & observe MPPT algorithm for a PV system’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 340347.
    42. 42)
      • 42. Femia, N., Petrone, G., Spagnuolo, G., et al: ‘A technique for improving P&O MPPT performances of double-stage grid-connected photovoltaic systems’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 44734482.
    43. 43)
      • 43. Yan, G., Zhang, X., Zhang, S., et al: ‘A novel virtual inertial control strategy for double-stage PV generation’. 2018 2nd IEEE Conf. on Energy Internet and Energy System Integration (EI2), Beijing, China, 2018, pp. 15.
    44. 44)
      • 44. Chen, Y., Wu, H., Chen, Y.: ‘DC bus regulation strategy for grid-connected PV power generation system’. 2008 IEEE Int. Conf. on Sustainable Energy Technologies, Singapore, Singapore, 2008, pp. 437442.
    45. 45)
      • 45. Bacon, V.D., Oliveira da Silva, S.A.: ‘Performance improvement of a three-phase phase-locked-loop algorithm under utility voltage disturbances using non-autonomous adaptive filters’, IET Power Electron., 2015, 8, (11), pp. 22372250.
    46. 46)
      • 46. Fukuda, S., Yoda, T.: ‘A novel current-tracking method for active filters based on a sinusoidal internal model [for PWM invertors]’, IEEE Trans. Ind. Appl., 2001, 37, (3), pp. 888895.
    47. 47)
      • 47. Liserre, M., Teodorescu, R., Blaabjerg, F.: ‘Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame’, IEEE Trans. Power Electron., 2006, 21, (3), pp. 836841.
    48. 48)
      • 48. Jain, S., Agarwal, V.: ‘A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems’, IEEE Power Electron. Lett., 2004, 2, (1), pp. 1619.
    49. 49)
      • 49. Wu, L., Zhao, Z., Liu, J.: ‘A single-stage three-phase grid-connected photovoltaic system with modified MPPT method and reactive power compensation’, IEEE Trans. Energy Convers., 2007, 22, (4), pp. 881886.
    50. 50)
      • 50. Oliveira, F.M., de Silva, S.A.O., da Durand, F.R., et al: ‘Grid-tied photovoltaic system based on PSO MPPT technique with active power line conditioning’, IET Power Electron., 2016, 9, (6), pp. 11801191.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5941
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5941
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address