Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Hourly electricity and heat Demand Response in the OEF of the integrated electricity-heat-natural gas system

Recently, demand-response (DR) programmes are one of the appropriate tools for energy systems to encourage flexible customers to participate in the operation of energy systems. One of the complex tasks in multi-energy environments is optimal energy flow (OEF) problem of these systems. In this regard, this study investigates the OEF of an integrated electrical, heat, and gas system considering flexible heat and electrical demands. The conventional DR programme has been combined with the demand-side energy supplying management activity by introducing switching concept among input energy carriers. The way of the supplying energy of flexible customer can be changed by switching among input energy carriers. Here, the integrated system operator minimises the system operation costs subject to supply flexible consumers’ energy. To solve the complex OEF problem, this study presents a new optimisation algorithm named modified biogeography-based optimisation (BBO) algorithm. In this study, the proposed modification for the original BBO increases the robustness and the capability of the proposed optimisation method. The numerical results show that the flexible DR programme creates smoother energy demand curves in heat and electrical networks and reduce the operating costs of the integrated system.

References

    1. 1)
      • 26. Simon, D.: ‘Biogeography-based optimization’, IEEE Trans Evol. Comput., 2008, 12, (6), pp. 702713.
    2. 2)
      • 38. Niknam, T., Massrur, H.R., Bahmani Firouzi, B.: ‘Stochastic generation scheduling considering wind power generators’, J. Renew. Sustain. Energy, 2012, 063119, pp. 119.
    3. 3)
      • 8. Martínez-Mares, A., Fuerte-Esquivel, C.R.: ‘A unified gas and power flow analysis in natural gas and electricity coupled networks’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 21562166.
    4. 4)
      • 32. Pirouti, M.: ‘Modeling and analysis of a district heating network’. PhD thesis, Institute of Energy, Cardiff Univ., Cardiff, Wales, 2013.
    5. 5)
      • 35. Boussaid, I., Chatterjee, A., Siarry, P., et al: ‘Biogeography based optimization for constrained optimization problems’, Comput. Oper. Res., 2012, 39, (12), pp. 32933304.
    6. 6)
      • 37. Massrur, H.R., Niknam, T., Aghaei, J., et al: A stochastic mid-term scheduling for integrated wind-thermal systems using self-adaptive optimization approach: a comparative study’, Energy, 2018, 155, pp. 552-564.
    7. 7)
      • 39. Massrur, H.R., Niknam, T., Mardaneh, M., et al: ‘Harmonic elimination in multilevel inverters under unbalanced voltages and switching deviation using a new stochastic strategy’, IEEE Trans. Ind. Inf., 2016, 12, (2), pp. 716725.
    8. 8)
      • 25. Ghasemi, M., Ghavidel, S., Ghanbarian, M.M., et al: ‘Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: a comparative study’, Inf. Sci., 2014, 281, pp. 225247.
    9. 9)
      • 40. De Wolf, D., Smeers, Y.: ‘The gas transmission problem solved by an extension of the simplex algorithm’, Manage. Sci, 2000, 46, (11), pp. 14541465.
    10. 10)
      • 6. Mancarella, P., Chicco, G.: ‘Global and local emission impact assessment of distributed cogeneration systems with partial-load models’, Appl. Energy, 2009, 86, pp. 20962106.
    11. 11)
      • 33. Savola, T., Keppo, I.: ‘Off-design simulation and mathematical modeling of small-scale CHP plants at part loads’, Appl. Therm. Eng., 2005, 25, (8), pp. 12191232.
    12. 12)
      • 30. Niknam, T., Narimani, M.R., Azizipanah-Abarghooee, R.: ‘A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect’, Energy Convers. Manage., 2012, 58, pp. 197206.
    13. 13)
      • 13. Geidl, M., Andersson, G.: ‘Optimal power flow of multiple energy carriers’, IEEE Trans. Power Syst., 2007, 22, (1), pp. 145155.
    14. 14)
      • 16. Mancarella, P., Chicco, G.: ‘Real-time demand response from energy shifting in distributed multi-generation’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 19281938.
    15. 15)
      • 5. Zhao, B., Conejo, A. J., Sioshansi, R.: ‘Unit commitment under gas-supply uncertainty and gas-price variability’, IEEE Trans. Power Syst., 2007, 32, (3), pp. 23942405.
    16. 16)
      • 18. Bahrami, S., Sheikhi, A.: ‘From demand response in smart grid toward integrated demand response in smart energy hub’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 650658.
    17. 17)
      • 23. Niknam, T., Massrur, H. R.: ‘Stochastic mid-term generation scheduling incorporated with wind power’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 937946.
    18. 18)
      • 29. Bakhouya, B., De Wolf, D.: ‘Solving gas transmission problems by taking compressors into account’, PhD thesis, Univ. littoral Opal. Coast, Dunkerque, France, 2008.
    19. 19)
      • 4. Sarker, M.R., Ortega-Vazquez, M.A., Kirschen, D.S.: ‘Optimal coordination and scheduling of demand response via monetary incentives’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 13411352.
    20. 20)
      • 7. Quelhas, A., Gil, E., McCalley, J.D., et al: ‘A multiperiod generalized network flow model of the U.S. Integrated energy system: part I – model description’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 829836.
    21. 21)
      • 34. Liu, X.: ‘Combined analysis of electricity and heat networks’, PhD dissertation, Institute of Energy, Cardiff University, Cardiff, Wales, 2013.
    22. 22)
      • 11. Shabanpour-Haghighi, A., Seifi, A.R.: ‘An integrated steady state operation assessment of electrical, natural gas, and district heating networks’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 36363647.
    23. 23)
      • 20. Jafari, F., Samet, H., Seifi, A.R., et al: ‘Developing a two-step method to implement residential demand response programmes in multi-carrier energy systems’, IET Gener. Transm. Distrib., 2018, 12, (11), pp. 26142623.
    24. 24)
      • 3. Mou, Y., Xing, H., Lin, Z., et al: ‘Decentralized optimal demand-side management for PHEV charging in a smart grid’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 726736.
    25. 25)
      • 36. Available at https://www.lri.fr/~hansen/Tech-Report-May-30-05.pdf, accessed date 10/15/2020.
    26. 26)
      • 19. Sardou, I.G., Khodayar, M.E., Ameli, M.T.: ‘Coordinated operation of natural gas and electricity networks with microgrid aggregators’, IEEE Trans. Smart Grid, 2018, 9, (1), pp. 199210.
    27. 27)
      • 9. Zhang, X., Che, L., Shahidehpour, M., et al: ‘Reliability-based optimal planning of electricity and natural gas interconnections for multiple energy hubs’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 16581667.
    28. 28)
      • 14. Chen, S., Wei, Z., Sun, G., et al: ‘Identifying optimal energy flow solvability in electricity–gas integrated energy systems’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 846854.
    29. 29)
      • 21. Zhang, X., Che, L., Shahidehpour, M., et al: ‘Electricity-natural gas operation planning with hourly demand response for deployment of flexible ramp’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 9961004.
    30. 30)
      • 10. Li, Z., Wu, W., Shahidehpour, M., et al: ‘Combined heat and power dispatch considering pipeline energy storage of district heating network’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 1222.
    31. 31)
      • 42. Available at https://figshare.com/s/ff054e801bd3459ad8ab, accessed date 10/15/2020.
    32. 32)
      • 1. Mikolajková, M., Haikarainen, C., Saxén, H., et al: ‘Optimization of a natural gas distribution network with potential future extensions’, Energy, 2017, 125, pp. 848859.
    33. 33)
      • 12. Massrur, H.R., Niknam, T., Aghaei, J., et al: ‘Fast decomposed energy flow in large-scale integrated electricity–gas-heat energy systems’, IEEE Trans. Sustain. Energy, 2018, 9, (4), pp. 15651577.
    34. 34)
      • 27. Mokhatab, S., Poe, W.A., Speight, J.G.: ‘Handbook of natural gas transmission and processing’ (Elsevier, Burlington, MA, USA, Gulf Professional, 2006).
    35. 35)
      • 28. Clamond, D.: ‘Efficient resolution of the Colebrook equation’, Ind. Eng. Chem. Res., 2008, 48, (7), pp. 723.
    36. 36)
      • 41. Shabanpour-Haghighi, A., Seifi, A.R.: ‘Simultaneous integrated optimal energy flow of electricity, gas, and heat’, Energy Convers. Manage., 2015, 101, pp. 579591.
    37. 37)
      • 22. Avatefipour, O., Piltan, F., Nasrabad, M.R.S., et al: ‘Design new robust self-tuning fuzzy backstopping methodology’, Int. J. Inf. Eng. Electron. Bus., 2014, 6, (1), pp. 4961.
    38. 38)
      • 2. Dorfner, J., Hamacher, T.: ‘Large-scale district heating network optimization’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 18841891.
    39. 39)
      • 15. Sheikhi, A., Rayati, M., Bahrami, S., et al: ‘A cloud computing framework on demand side management game in smart energy hubs’, Elect. Power Energy Syst., 2015, 64, pp. 10071016.
    40. 40)
      • 31. Massrur, H.R., Niknam Fotuhi-Firuzabad, M.: Investigation of carrier demand response uncertainty on energy flow of renewable-based integrated electricity–gas-heat systems’, IEEE Trans. Ind. Inf., 2018, 14, (11), pp. 51335142.
    41. 41)
      • 24. Avatefipour, O., Nafisian, A.: ‘A novel electric load consumption prediction and feature selection model based on modified clonal selection algorithm’, J. Intell. Fuzzy Syst., 2018, 34, (4), pp. 22612272.
    42. 42)
      • 17. Jovanovic, R., Bousselham, A., Bayram, I.S.: ‘Residential demand response scheduling with consideration of consumer preferences’, Appl. Sci., 2016, (1), pp. 114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5859
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5859
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address