Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Intrinsic limitations of load-shifting response dynamics: preliminary results from particle hopping models of homogeneous density incompressible loads

In this study, end-use storage loads with elasticity constrained by a time window are modelled by a particle hopping cellular automaton. The automaton model is introduced and parameterised to obtain results on the ideal load-shifting response. Simulation is used to analyse the intrinsic limitations of load-shifting ramping capabilities. New concepts are introduced: load particle velocity and particle density. These concepts are used to advance formal hypotheses on the ramping limitations. Hypotheses are tested against experimental results to conclude about the underlying potential of load-shifting demand response.

References

    1. 1)
      • 13. Mathieu, J. L., Koch, S., Callaway, D. S.: ‘State estimation and control of electric loads to manage real-time energy imbalance’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 430440.
    2. 2)
      • 6. Strbac, G.: ‘Demand side management: benefits and challenges’, Energy Policy, 2008, 36, (12), pp. 44194426.
    3. 3)
      • 10. Parizy, E. S., Bahrami, H. R., Choi, S.: ‘A low complexity and secure demand response. Technique for peak load reduction’, IEEE Trans. Smart Grid, in press.
    4. 4)
      • 5. Andersson, S. L., Elofsson, A. K., Galus, M. D., et al: ‘Plug-in hybrid electric vehicles as regulating power providers: case studies of Sweden and Germany’, Energy Policy, 2010, 38, (6), pp. 27512762.
    5. 5)
      • 20. Meyn, S. P., Tweedie, R. L.: ‘Markov chains and stochastic stability’ (Sringer-Verlag, London, UK, 2005).
    6. 6)
      • 7. Hopkins, A. S., Whited, M.: ‘Best practices in utility demand response programs’ (Synapse Energy Economics Inc., Cambridge, MA, USA, 2017), pp. 147.
    7. 7)
      • 3. Roscoe, A. J., Ault, G.: ‘Supporting high penetrations of renewable generation via implementation of real-time electricity pricing and demand response’, IET Renew. Power. Gener., 2010, 4, (4), pp. 369382.
    8. 8)
      • 22. Yilmaz, H. U., Hartel, R., Keles, D., et al: ‘Analysis of the potential for power-to-heat/cool applications to increase flexibility in the European electricity system until 2030’. INSIGHT_E Policy Report, 2017.
    9. 9)
      • 8. Perfumo, C., Kofman, E., Braslavsky, J. H., et al: ‘Load management: model-based control of aggregate power for populations of thermostatically controlled loads’, Energy Convers. Manage., 2012, 55, pp. 3648.
    10. 10)
      • 1. Boiteux, M.: ‘Peak-load pricing’, J. Bus., 1960, 33, (2), pp. 157179.
    11. 11)
      • 21. Stuart, A., Ord, K.: ‘Kendall's advanced theory of statistics: vol. I – distribution theory’ (Edward Arnold, London, UK, 1994).
    12. 12)
      • 2. FERC: ‘National action plan for demand response’, Tech. Rep., June 2010.
    13. 13)
      • 12. Liu, M., Shi, Y.: ‘Model predictive control of aggregated heterogeneous second-order thermo-statically controlled loads for ancillary services’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 19631971.
    14. 14)
      • 9. Bashash, S., Fathy, H. K.: ‘Modeling and control of aggregate air conditioning loads for robust renewable power management’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 13181327.
    15. 15)
      • 15. Parvania, M., Fotuhi-Firuzabad, M.: ‘Demand response scheduling by stochastic SCUC’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 8998.
    16. 16)
      • 4. Callaway, D. S., Hiskens, I. A: ‘Achieving controllability of electric loads’, Proc. IEEE, 2011, 99, (1), pp. 184199.
    17. 17)
      • 14. Paterakis, N. G., Tascıkaraoglu, A., Erdinç, O., et al: ‘Assessment of demand-response-driven load pattern elasticity using a combined approach for smart households’, IEEE Trans. Ind. Inf., 2016, 12, (4), pp. 15291539.
    18. 18)
      • 23. EEA: ‘Electric vehicles and the energy sector – impacts on Europe's future emissions’. Briefing No. 2/2016, European Environmental Agency.
    19. 19)
      • 18. Nagel, K., Schreckenberg, M.: ‘A cellular automaton model for freeway traffic’, J. Phys. I, 1992, 2, (12), pp. 22212229.
    20. 20)
      • 11. Hu, R. L., Skorupski, R., Entriken, R., et al: ‘A mathematical programming formulation for optimal load shifting of electricity demand for the smart grid’, IEEE Trans. Big Data, in press.
    21. 21)
      • 17. Nazir, M. S., Ross, S. C., Mathieu, J. L., et al: ‘Performance limits of thermostatically controlled loads under probabilistic switching’. 20th IFAC World Congress, IFAC-PapersOnLine, Toulouse, France, 2017, vol. 50, (1), pp. 88738880.
    22. 22)
      • 16. Paterakis, N. G., Erdinç, O., Bakirtziset, A. G., et al: ‘Load-following reserves procurement considering flexible demand-Side resources under high wind power penetration’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 13371350.
    23. 23)
      • 19. Nagel, K.: ‘Particle hopping models and traffic flow theory’, Phys. Rev. E, 1996, 53, (5), pp. 46554672.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5838
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5838
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address