http://iet.metastore.ingenta.com
1887

Optimisation of offshore wind farm inter-array collection system

Optimisation of offshore wind farm inter-array collection system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an automatic tool developed for the optimisation of the layout of offshore inter-array cable systems. Employing stochastic approaches, this tool can quickly find a near-optimum cable connectivity solution based on one of the criteria including capital expenditure (CAPEX), operational expenditure (OPEX), or their combination considering the net present value over the project lifespan. The seabed geo-tech constraints are considered to minimise cable routes across seabed areas where challenging installation conditions may exist, and to avoid cable routes across the seabed areas where the installation is impossible. The tool employs advanced identification of suitable locations of multiple offshore substations for large wind farms. This optimisation tool is coded in Python 2.7 and scripted IPSA + is used as the load flow calculation engine for power loss calculation. This tool has been applied to 4 GW offshore wind projects developed in European and Asian waters and it is demonstrated that the tool automates the design for the inter-array cable system layout and delivers measurable overall project efficiency gains. Comparisons were made between radial design and branched design; it is shown that the branched design can achieve better cost savings than the radial design.

References

    1. 1)
      • 1. Department of Energy and Climate Change: UK, ‘UK renewable energy roadmap update 2012’, 2012.
    2. 2)
      • 2. US Energy Information Administration: ‘Levelized cost of new generation resources in the annual energy outlook 2011’, 2011.
    3. 3)
      • 3. Low Carbon Innovation Coordination Group: ‘Technology innovation needs assessment-offshore wind power summary report’, 2012.
    4. 4)
      • 4. UK government: ‘Offshore wind industrial strategy-business and government action’, 2013.
    5. 5)
      • 5. Pillai, A.C., Chick, J., Johanning, L.: ‘Optimisation of offshore wind farms using a genetic algorithm’, Int. J. Offshore Polar Eng., 2016, 26, (3), pp. 225234.
    6. 6)
      • 6. Marge, T., Lumbreras, S., Ramos, A., et al: ‘Integrated offshore wind farm design: optimizing micrositing and cable layout simultaneously’, Journal Paper Draft for Wind Energy, Available at: http://hobbsgroup.johnshopkins.edu/docs/papers/MargeLumbrerasRamosHobbdraft7.11.2018.pdf.
    7. 7)
      • 7. Valverde, P., Sarmento, A., Alves, M.: ‘Offshore wind farm layout optimization-state of the art’, J. Ocean Wind Energy, 2014, 1, (1), pp. 2329.
    8. 8)
      • 8. Lindahl, M., Fink Bagger, N.C., Stidsen, T., et al: ‘Optiarray from dong energy’. Proc. of Wind Integration Workshop, London, UK, 2013.
    9. 9)
      • 9. Svendsen, H.G.: ‘Planning tool for clustering and optimised grid connection of offshore wind farms’, Energy Proc., 2013, 35, pp. 297306.
    10. 10)
      • 10. Gonzalez-Longatt, F.M., Wall, P., Regulski, P., et al: ‘Optimal electric network design for a large offshore wind farm based on a modified genetic algorithm approach’, IEEE Syst. J., 2012, 6, (1), pp. 164172.
    11. 11)
      • 11. Bauer, J., Lysgaard, J.: ‘The offshore wind farm array cable layout problem: a planar open vehicle routing problem’, J. Oper. Res. Soc., 2015, 66, (3), p. 360.
    12. 12)
      • 12. Pillai, A.C., Chick, J., Johanning, L., et al: ‘Offshore wind farm electrical cable layout optimization’, Eng. Optim., 2015, 47, (12), pp. 16891708.
    13. 13)
      • 13. Fischetti, M., Pisinger, D.: ‘Optimizing wind farm cable routing considering power losses’, Eur. J. Oper. Res., 2018, 270, (3), pp. 917930.
    14. 14)
      • 14. Hou, P., Hu, W.H., Chen, Z.: ‘Optimisation for offshore wind farm cable connection layout using adaptive particle swarm optimisation minimum spanning tree method’, IET Renew. Power Gener., 2016, 10, (5), pp. 694702.
    15. 15)
      • 15. Hou, P., Hu, W.H., Chen, C., et al: ‘Overall optimisation for offshore wind farm electrical system’, Wind Energy, 2016, 20, (6), doi: 10.1002/we.
    16. 16)
      • 16. Rodrigues, S., Restrepo, C., Katsouris, G., et al: ‘A multi-objective optimization framework for offshore wind farm layouts and electric infrastructures’, Energies, 2016, 9, p.216.
    17. 17)
      • 17. Gong, X., Kuenzel, S., Pal, B.C.: ‘Optimal wind farm cabling’, IEEE Trans. Sustain. Energy, 2018, 9, (3), pp. 11261136.
    18. 18)
      • 18. Jenkins, A.M., Scutariu, M., Smith, K.S.: ‘Offshore wind farm inter-array cable layout’. PowerTech (POWERTECH), 2013 IEEE, Grenoble, 2013.
    19. 19)
      • 19. Arthur, D., Vassilvitskii, S.: ‘K-means + +: the advantages of careful seeding’. SODA ‘07 Proc. of the 18th Annual ACM-SIAM Symp. on Discrete Algorithms, Philadelphia, 2007.
    20. 20)
      • 20. Schubert.: ‘Same-size k-means variation, tutorial of ELKI-environment for developing KDD applications supported by index structures’, Ludwig-Maximilians Universitat Munchen, Available at: http://elki.dbs.ifi.lmu.de/wiki/Tutorial/SameSizeKMeans#no1.
    21. 21)
      • 21. Wikipedia.: ‘Dijkstra's_algorithm’, Available at: http://en.wikipedia.org/wiki/Dijkstra's_algorithm.
    22. 22)
      • 22. de Berg, M., Cheong, O., van Kreveld, M., et al (Eds.): ‘Visibility graphs’, in ‘Computational geometry-algorithms and applications’ (Springer-Verlag, Berlin Heidelberg, Germany, 2008, 3rd Edn.), pp. 326330.
    23. 23)
      • 23. An O(n2 log n) Algorithm for Computing Visibility Graphs’: Smith College, US, Available at: http://cs.smith.edu/∼streinu/Teaching/Courses/274/Spring98/Projects/Philip/fp/algVisibility.htm.
    24. 24)
      • 24. Graham's scanning’: Kent State University. Available at: http://www.personal.kent.edu/∼rmuhamma/Compgeometry/MyCG/ConvexHull/GrahamScan/grahamScan.htm.
    25. 25)
      • 25. IPSA1.6.9: Power system analysis software, TNEI, https://www.ipsa-power.com/.
    26. 26)
      • 26. Sannino, H.E.A.: ‘Reliability of collection grids for large offshore wind parks’. 9th PMAPS, Stockholm, 2006.
    27. 27)
      • 27. Centre for Sustainable Electricity and Distributed Generation: ‘Cost benefit methodology for optimal design of offshore transmission systems’, 2008.
    28. 28)
      • 28. Walling, R.A., Ruddy, T.: ‘Economic optimisation of offshore windfarm substations and collection systems’. Vth Int. Workshop on Large-Scale Integration of Wind Power, Glasgow, 2005.
    29. 29)
      • 29. Twidell, J., Weir, T.: ‘Renewable energy resources’ (Taylor & Frances, Oxford, UK, 2006, 2nd edn.), pp. 299304.
    30. 30)
      • 30. Scutariu, M.: ‘Techno-economical optioneering of offshore wind farms electrical systems’. IEEE Power Tech Conf., Lausanne, 2007.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5805
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5805
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address