access icon free Comprehensive performance evaluation of various solar PV system configurations

This study presents a year-long comprehensive performance analysis of four distinct solar photovoltaic (SPV) system configurations with central inverter, micro inverter, fixed axis structure and dual axis sun tracker (DAST) structure installed at the Indian Institute of Technology Kharagpur, West Bengal, India. Technical and economic performance indices are used to analyse the impact of inverter technology and DAST structure using field data of one year. Specifically, technical parameters specified by IEC 61724 are used to compare simulated results with field data from June 2017 to May 2018. The difference between the simulated and measured values of all the configurations is mostly attributed to the variation in solar irradiance and module temperature data. For simulation study, daily and monthly average values are considered while daily instantaneous data are used for measured values. Comparison of measured values through energy yield, capacity factor and performance ratio (PR) indices has confirmed the superiority of dual axis micro inverter system configuration. Additionally, the impact of seasonal variation on PR values for all four system configurations is also analysed. Economic performance for 25 years of project life using payback period, net present value and levelised cost of energy indices concludes dual axis central inverter system configuration as the most economical.

Inspec keywords: invertors; photovoltaic power systems

Other keywords: dual axis central inverter system configuration; solar irradiance; fixed axis structure; module temperature data; dual axis microinverter system configuration; net present value; distinct solar photovoltaic system configurations; DAST structure; PR values; SPV system configurations; inverter technology; energy indices

Subjects: Solar power stations and photovoltaic power systems; DC-AC power convertors (invertors); Power electronics, supply and supervisory circuits

References

    1. 1)
      • 18. Fathabadi, H.: ‘Novel online sensorless dual-axis sun tracker’, IEEE/ASME Trans. Mechatro., 2017, 22, (1), pp. 321328.
    2. 2)
      • 9. Attari, K., Elyaakoubi, A., Asselman, A.: ‘Performance analysis and investigation of a grid-connected photovoltaic installation in Morocco’, Energy Rep., 2016, 2, pp. 231266.
    3. 3)
      • 26. ‘Enphase IQ 6 and IQ 6 + Microinverters datasheet’, https://enphase.com/sites/default/files/downloads/support/IQ6-IQ6-plus-DS-EN-US.pdf, accessed 18 April 2018.
    4. 4)
      • 20. Mason, J.E., Fthenakis, V.M., Hansen, T., et al: ‘Energy payback and life-cycle CO2 emissions of the BOS in an optimized 3.5 MW PV installation’, Prog. Photovolt., Res. Appl., 2006, 14, (2), pp. 179190.
    5. 5)
      • 23. Pal, D., Koniki, H., Bajpai, P.: ‘Central and micro inverters for solar photovoltaic integration in AC grid’. Proc. IEEE Nineteenth National Power Systems Conf. (NPSC), Bhubaneswar, India, December 2016, pp. 16.
    6. 6)
      • 7. ‘World's largest renewable energy expansion program’, https://mnre.gov.in/, accessed 15 June 2018.
    7. 7)
      • 16. Strache, S., Ralf, W., Stefan, H.: ‘A comprehensive, quantitative comparison of inverter architectures for various PV systems, PV cells, and irradiance profiles’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 813822.
    8. 8)
      • 17. Ray, S., Tripathi, A.K.: ‘Design and development of tilted single axis and azimuth-altitude dual axis solar tracking systems’. Proc. IEEE Int. Conf. on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, July 2016, pp. 16.
    9. 9)
      • 12. Arraez-Cancelliere, O.A., Munoz-Galeano, N., Lopez-Lezama, J.M.: ‘Performance and economical comparison between micro-inverter and string inverter in a 5, 1 kWp residential PV-system in Colombia’. Proc. IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, June 2017, pp. 15.
    10. 10)
      • 5. Buckley, T., Shah, K.: ‘IEEFA report on India's Electricity Sector Transformation’, November, 2017.
    11. 11)
      • 30. Marion, B., Adelstein, J., Boyle, K., et al: ‘Performance parameters for grid-connected PV systems’. Proc. Photovoltaic Specialists Conf., Record of the Thirty-first IEEE Conf., Lake Buena Vista, FL, USA, January 2005, pp. 16011606.
    12. 12)
      • 24. ‘ELDORA Technical datasheet for Solar PV modules’, http://www.vikramsolar.com/wp-content/uploads/2016/02/DS-60-P-4BB-E-R01-Screen.pdf, accessed 18 April 2018.
    13. 13)
      • 38. Jordan, D.C., Kurtz, S.R.: ‘Photovoltaic degradation rates-an analytical review’, Prog. Photovolt., Res. Appl., 2013, 21, (1), pp. 1229.
    14. 14)
      • 1. ‘Global Solar Demand Monitor: Q1 2018’, https://www.greentechmedia.com/research/report/global-solar-demand-monitor, accessed 09 June 2018.
    15. 15)
      • 37. Sullivan, W.G., Wicks, E.M., Koelling, C.P.: ‘Engineering economy’ (16th Edition, Pearson Prentice Hall, Upper Saddle River, NJ, USA, 2009).
    16. 16)
      • 19. IEA.: ‘Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity’, IEA PVPS Task 12, Subtask 20, October 2009[Available at: www.iea-pvps.org].
    17. 17)
      • 13. Georgitsioti, T., Pillai, G., Pearsall, N., et al: ‘Short-term performance variations of different photovoltaic system technologies under the humid subtropical climate of kanpur in India’, IET Renew. Power Gener., 2015, 9, (5), pp. 438445.
    18. 18)
      • 34. Branker, K., Pathak, M.J.M., Pearce, J.M.: ‘A review of solar photovoltaic levelized cost of electricity’, Renew. Sustain. Energy Rev., 2011, 15, (9), pp. 44704482.
    19. 19)
      • 2. IEA.: ‘Technology roadmap: solar photovoltaic energy’ (International Energy Agency, France, 2014), pp. 160.
    20. 20)
      • 21. Sharma, B.D.: ‘Performance of solar power plants in India’ (Central Electricity Regulatory Commission, New Delhi, 2011).
    21. 21)
      • 25. ‘Powador 39.0-60.0 TL3 3-phase solar PV inverter datasheet’, http://kaco-newenergy.com/products/solar-pv-inverters/commercial-pv-systems/powador-33-50-kva/, accessed 18 April 2018.
    22. 22)
      • 36. Al-Kayiem, H.H., Aja, O.C.: ‘historic and recent progress in solar chimney power plant enhancing technologies’, Renew. Sustain. Energy Rev., 2016, 58, (2016), pp. 12691292.
    23. 23)
      • 33. Lin, C.H., Hsieh, W.L., Chen, C.S., et al: ‘Optimization of photovoltaic penetration in distribution systems considering annual duration curve of solar irradiation. IEEE Trans. Power Syst., 2012, 27, (2), pp. 10901097.
    24. 24)
      • 22. Jamil, I., Zhao, J., Zhang, L., et al: ‘Evaluation of energy production and energy yield assessment based on feasibility, design, and execution of 3 × 50 MW grid-connected solar PV pilot project in nooriabad’, Int. J. Photoenergy, 2017, 2017, pp. 118.
    25. 25)
      • 4. ‘Sustainable Innovation Forum 2015’, http://www.cop21paris.org/about/cop21, accessed 15 June 2018.
    26. 26)
      • 15. Rana, A.S., Nasir, M., Khan, H.A.: ‘String level optimisation on grid-tied solar PV systems to reduce partial shading loss’, IET Renew. Power Gener., 2017, 12, (2), pp. 143148.
    27. 27)
      • 3. Energy Statistics 2017’. Central Statistics Office Ministry of Statistics and Progamme Implementation Government of India, 24th Issue, March 2017.
    28. 28)
      • 10. Jahn, U., Nasse, W., Nordmann, T., et al: ‘Achievements of task 2 of IEA PV power systems programme: final results on PV system performance’. Proc. 19th European Photovoltaic Solar Energy Conf., Paris, France, June 2004, pp. 28132816.
    29. 29)
      • 11. IEA (International Energy agency) ‘IEA PVPS Task 13: Performance, Operation and Reliability of Photovoltaic Systems: Work Plan- March 2018’, 2018[Available at: www.iea-pvps.org].
    30. 30)
      • 28. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Conver., 2007, 22, (2), pp. 439449.
    31. 31)
      • 32. Masters, G.M.: ‘Renewable and efficient electric power systems’ (John Wiley & Sons, Hoboken, NJ, USA, 2013, 4th edn.).
    32. 32)
      • 14. Kjaer, S.B., Pedersen, J.K., Blaabjerg, F.: ‘A review of single-phase grid-connected inverters for photovoltaic modules’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12921306.
    33. 33)
      • 6. Kapoor, K., Pandey, K.K., Jain, A.K., et al: ‘Evolution of solar energy in India: a review’, Renew. Sustain. Energy Rev., 2014, 40, (1), pp. 475487.
    34. 34)
      • 31. IEC 61724: ‘Photovoltaic system performance monitoring-guidelines for measurement, data exchange and analysis’ (International Electrotechnical Commission, Geneva, Switzerland, 1998).
    35. 35)
      • 8. Woyte, A., Richter, M., Moser, D., et al: ‘Monitoring of photovoltaic systems: good practices and systematic analysis’. Proc. 28th European Photovoltaic Solar Energy Conf., Paris, France, October 2013, pp. 36863694.
    36. 36)
      • 35. Sharma, V., Chandel, S.S.: ‘Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India’, Energy, 2013, 55, pp. 476485.
    37. 37)
      • 29. Yazdani, A., Iravani, R.: ‘Voltage sourced converters in power systems: modeling, control and applications’ (IEEE press, John Wiley & Sons, New Jersey, USA, 2010).
    38. 38)
      • 27. Villalva, M.G., Gazoli, J.R., Filho, E.R.: ‘Comprehensive approach to modeling and simulation of photovoltaic arrays’, IEEE Trans. Power Electr., 2009, 24, (5), pp. 11981208.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5729
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5729
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading