access icon free States prediction for solar power and wind speed using BBA-SVM

For solar power and wind speed prediction, the uncertainty and randomness of prediction model or parameters make it a challenging task to optimise the accurate output. This study presents a novel backward bat algorithm (BBA) for the parameter tuning of the support vector machine (SVM). Then, the BBA-SVM approach is used to predict the solar power and wind speed output in different situations. The salient feather of the novel BBA-SVM is that an improved flying principle is developed by adopting the backward flying mechanism, which enhances the randomly searching ability and thus avoids the local optimum effectively. Compared to traditional SVM methods, the BBA-SVM gains higher training accuracy, shorter training time, and better prediction performance. Take the solar power output in a sunny day as the validation case, the real data sets from Australia are adopted for comparative simulations, demonstrating the priority of the BBA-SVM against some other SVMs like the grid searching SVM, bat algorithm SVM, and generic algorithm aided BBA-SVM.

Inspec keywords: optimisation; support vector machines; power engineering computing; solar power stations

Other keywords: backward bat algorithm; parameter tuning; backward flying mechanism; support vector machine; states prediction; BBA-SVM approach; solar power output; wind speed prediction

Subjects: Optimisation techniques; Solar power stations and photovoltaic power systems; Knowledge engineering techniques; Optimisation techniques; Power engineering computing

References

    1. 1)
      • 3. Zeng, J., Qiao, W.: ‘Short-term solar power prediction using a support vector machine’, Renew. Energy, 2013, 52, (2), pp. 118127.
    2. 2)
      • 1. Sekulima, E.B., Anwar, M.B., Hinai, A.A., et al: ‘Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review’, IET Renew. Power Gener., 2016, 10, (7), pp. 885989.
    3. 3)
      • 22. Li, M.W., Geng, J., Wang, S.M., et al: ‘Hybrid chaotic quantum bat algorithm with SVR in electric load forecasting’, Energies, 2017, 10, (12), pp. 118.
    4. 4)
      • 19. Lu, H., Li, Y., Chen, M., et al: ‘Brain intelligence: go beyond artificial intelligence’, Mobile Netw. Appl., 2018, 23, (2), pp. 368375.
    5. 5)
      • 12. Li, Y., Wen, Z., Cao, Y.: ‘A combined forecasting approach with model self-adjustment for renewable generations and energy loads in smart community’, Energy, 2017, 129, pp. 216227.
    6. 6)
      • 16. Ozkan, M.B., Karagoz, P.: ‘A novel wind power forecast model: statistical hybrid wind power forecast technique (SHWIP)’, IEEE Trans. Ind. Inf., 2015, 11, (2), pp. 375387.
    7. 7)
      • 15. Zhang, Y., Wang, P., Ni, T., et al: ‘Wind power prediction based on LS-SVM model with error correction’, Adv. Electr. Comput. Eng., 2017, 17, (1), pp. 38.
    8. 8)
      • 18. Okumus, I., Dinler, A.: ‘Current status of wind energy forecasting and a hybrid method for hourly predictions’, Energy Convers. Manage., 2016, 123, pp. 362371.
    9. 9)
      • 20. Wang, J., Wang, Y., Li, Y.: ‘A novel hybrid strategy using three-phase feature extraction and a weighted regularized extreme learning machine for multi-step ahead wind speed prediction’, Energies, 2018, 11, (2), pp. 133.
    10. 10)
      • 27. Sadamoto, T., Ishizaki, T., Koike, M., et al: ‘Spatiotemporally multiresolutional optimization toward supply-demand-storage balancing under PV prediction uncertainty’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 853865.
    11. 11)
      • 17. Chang, G.W., Lu, H.J., Chang, Y.R., et al: ‘An improved neural network-based approach for short-term wind speed and power forecast’, Renew. Energy, 2017, 105, pp. 301311.
    12. 12)
      • 28. ‘DNV GL’, https://www.dnvgl.com/energy/generation /software/bladed/index.html, accessed 1 January 2018.
    13. 13)
      • 9. Vaz, A.G.R., Elsinga, B., van Sark, W.G.J.H.M., et al: ‘An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands’, Renew. Energy, 2016, 85, pp. 631641.
    14. 14)
      • 11. Almeida, M.P., Perpiñán, O., Narvarte, L.: ‘PV power forecast using a nonparametric PV model’, Sol. Energy, 2015, 115, pp. 354368.
    15. 15)
      • 8. Leva, S., Dolara, A., Grimaccia, F., et al: ‘Analysis and validation of 24 h ahead neural network forecasting of photovoltaic output power’, Math. Comput. Simul., 2017, 131, (C), pp. 88100.
    16. 16)
      • 14. Zhang, Y., Sun, H.X., Guo, Y.J., et al: ‘Improved grey model with rolling method for wind power prediction’. Control Conf. IEEE, Chengdu, People's Republic of China, July 2016, pp. 97849786.
    17. 17)
      • 24. ‘U.S. Department of Energy (DOE)’, http://apps1.eere. energy.gov/buildings/energyplus/, accessed 4 April 2018.
    18. 18)
      • 4. Guermoui, M., Rabehi, A., Gairaa, K., et al: ‘Support vector regression methodology for estimating global solar radiation in Algeria’, Eur. Phys. J. Plus, 2018, 133, (1), pp. 19.
    19. 19)
      • 7. Olatomiwa, L., Mekhilef, S., Shamshirband, S., et al: ‘A support vector machine–firefly algorithm-based model for global solar radiation prediction’, Sol. Energy, 2015, 115, pp. 632644.
    20. 20)
      • 6. Eseye, A.T., Zhang, J., Zheng, D.: ‘Short-term photovoltaic solar power forecasting using a hybrid wavelet-PSO-SVM model based on SCADA and meteorological information’, Renew. Energy, 2018, 118, pp. 357367.
    21. 21)
      • 13. Zhang, Y., Wang, P., Cheng, P., et al: ‘Wind speed prediction with wavelet time series based on lorenz disturbance’, Adv. Electr. Comput. Eng., 2017, 17, (3), pp. 107114.
    22. 22)
      • 2. Mellit, A., Pavan, A.M., Benghanem, M.: ‘Least squares support vector machine for short-term prediction of meteorological time series’, Theor. Appl. Climatol., 2013, 111, (1–2), pp. 297307.
    23. 23)
      • 5. Li, P., Dargaville, R., Cao, Y., et al: ‘Storage aided system property enhancing and hybrid robust smoothing for large-scale PV systems’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 28712879.
    24. 24)
      • 23. Li, P., Li, R., Cao, Y., et al: ‘Multiobjective sizing optimization for island microgrids using a triangular aggregation model and the Levy harmony algorithm’, IEEE Trans. Ind. Inf., 2018, 14, (8), pp. 34953505.
    25. 25)
      • 10. Abedinia, O., Raisz, D., Amjady, N.: ‘Effective prediction model for Hungarian small-scale solar power output’, IET Renew. Power Gener., 2017, 11, (13), pp. 16481658.
    26. 26)
      • 25. ‘Australian PV Institute’, http://apvi.org.au/, accessed 4 January 2018.
    27. 27)
      • 26. Yang, X.S.: ‘A New metaheuristic bat-inspired algorithm’, Comput. Knowl. Technol., 2010, 284, pp. 6574.
    28. 28)
      • 21. Farzin, S., Singh, V.P., Karami, H., et al: ‘Flood routing in river reaches using a three-parameter muskingum model coupled with an improved bat algorithm’, Water-Sui., 2018, 10, (9), pp. 124.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5673
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5673
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading