Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Combinatorial method for bandwidth selection in wind speed kernel density estimation

Accurate estimation of wind speed probability density at a given site is crucial in maximising the yield of a wind farm. This goal calls for devising probabilistic models with adaptive algorithms that accurately fit wind speed distributions. In this study, a non-parametric combinatorial method is implemented for obtaining an accurate non-parametric kernel density estimation (KDE)-based statistical model of wind speed, in which the selection of the bandwidth parameter is optimised concerning mean integrated absolute error ( error) between the true and hypothesised densities. The proposed model is compared with three popular parametric models and Rule of Thumb-based KDE model using standard goodness-of-fit and statistical tests. Results confirm the suitability of KDE methods for wind speed modelling and the accuracy of the proposed implemented combinatorial method. It is worthwhile mentioning that the implemented procedure is adaptive (i.e. data driven) and robust.

References

    1. 1)
      • 32. Kaga, G.: ‘Md: selecting bandwidth for kernel density estimator with minimum distance method(CRAN Repository, 2016). Available at https://cran.r-project.org/web/packages/md/md.pdf, accessed February 2017.
    2. 2)
      • 29. Aries, N., Boudia, S.M., Ounis, H.: ‘Deep assessment of wind speed distribution models: a case study of four sites in Algeria’, Energy Convers. Manage., 2018, 155, pp. 7890.
    3. 3)
      • 9. Al Abri, R.S., El Saadany, E.F., Atwa, Y.M.: ‘Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 326334.
    4. 4)
      • 19. Qin, Z., Li, W., Xiong, X.: ‘Estimating wind speed probability distribution using kernel density method’, Electr. Power Syst. Res., 2011, 81, (12), pp. 21392146.
    5. 5)
      • 20. Xu, X., Yan, Z., Xu, S.: ‘Estimating wind speed probability distribution by diffusion-based kernel density method’, Electr. Power Syst. Res., 2015, 121, pp. 2837.
    6. 6)
      • 34. DeGroot, M.H., Schervish, M.J.: ‘Probability and statistics: Pearson new international edition’ (Pearson Education Limited, Harlow, UK, 2013, 4th edn.).
    7. 7)
      • 13. Atwa, Y.M., El Saadany, E.F., Salama, M.M.A., et al: ‘Optimal renewable resources mix for distribution system energy loss minimization’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 360370.
    8. 8)
      • 31. Bowman, A.W., Azzalini, A.: ‘Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations’, in Atkinson, A.C., Copas, J.B., Pierce, D.A., et al (eds.): ‘Oxford statistical science series’, vol. 18, (Oxford University Press, Oxford, UK, 1997), pp. 1722.
    9. 9)
      • 23. Devroye, L.: ‘An application of the efron-stein inequality in density estimation’, Ann. Stat., 1987, 15, (3), pp. 13171320.
    10. 10)
      • 16. Wang, J., Hu, J., Ma, K.: ‘Wind speed probability distribution estimation and wind energy assessment’, Renew. Sustain. Energy Rev., 2016, 60, pp. 881899.
    11. 11)
      • 2. Kabouris, J., Kanellos, F.D.: ‘Impacts of large-scale wind penetration on designing and operation of electric power systems’, IEEE Trans. Sustain. Energy, 2010, 1, (2), pp. 107114.
    12. 12)
      • 24. Rosenblatt, M.: ‘Remarks on some nonparametric estimates of a density function’, Ann. Math. Stat., 1956, 27, (3), pp. 832837.
    13. 13)
      • 17. Miao, S., Xie, K., Yang, H., et al: ‘A mixture kernel density model for wind speed probability distribution estimation’, Energy Convers. Manage., 2016, 126, pp. 10661083.
    14. 14)
      • 7. Cui, M., Feng, C., Wang, Z., et al: ‘Statistical representation of wind power ramps using a generalized Gaussian mixture model’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 261272.
    15. 15)
      • 11. Hernandez, J.C., Ortega, M.J., Medina, A.: ‘Statistical characterisation of harmonic current emission for large photovoltaic plants’, Int. Trans. Electr. Energ. Syst., 2014, 24, (8), pp. 11341150.
    16. 16)
      • 33. Lehmann, E.L., Romano, J.P.: ‘Testing statistical hypotheses’, in Casella, G., Fienberg, S., Olkin, I. (eds.): ‘Springer texts in statistics’ (Springer Science & Business Media, New York, USA, 2006, 3rd edn.), pp. 583589.
    17. 17)
      • 35. Chang, T.P.: ‘Estimation of wind energy potential using different probability density functions’, Appl. Energy, 2011, 88, (5), pp. 18481856.
    18. 18)
      • 5. De Vos, K., Morbee, J., Driesen, J., et al: ‘Impact of wind power on sizing and allocation of reserve requirements’, IET Renew. Power Gener., 2013, 7, (1), pp. 19.
    19. 19)
      • 26. Devroye, L., Lugosi, G.: ‘Combinatorial methods in density estimation’ (Springer Science & Business Media, New York, USA, 2012, 1st edn.), Springer Series in Statistics.
    20. 20)
      • 1. Global Wind Report 2016’. Global Wind Energy Council, 2016. Available at http://gwec.net/publications/global-wind-report-2/global-wind-report-2016/, accessed December 2017.
    21. 21)
      • 30. Kantar, Y.M., Usta, I., Arik, I., et al: ‘Wind speed analysis using the extended generalized Lindley distribution’, Renew. Energy, 2018, 118, pp. 10241030.
    22. 22)
      • 27. Pfenninger, S., Staffell, I.: ‘Renewables.ninja’, London, 2016. Available at https://www.renewables.ninja/, accessed February 2017.
    23. 23)
      • 12. Arefifar, S.A., Mohamed, Y.A.R.I., El Fouly, T.: ‘Optimized multiple microgrid-based clustering of active distribution systems considering communication and control requirements’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 711723.
    24. 24)
      • 25. Parzen, E.: ‘On estimation of a probability density function and mode’, Ann. Math. Stat., 1962, 33, (3), pp. 10651076.
    25. 25)
      • 6. Atwa, Y.M., El Saadany, E.F., Guise, A.C.: ‘Supply adequacy assessment of distribution system including wind-based DG during different modes of operation’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 7886.
    26. 26)
      • 3. Burke, D.J., Tuohy, A., Jody DillonO'Malley, M.J.: ‘Should unit commitment be endogenously included in wind power transmission planning optimisation models?’, IET Renew. Power Gener., 2014, 8, (2), pp. 132140.
    27. 27)
      • 28. Staffell, I., Pfenninger, S.: ‘Using bias-corrected reanalysis to simulate current and future wind power output’, Energy, 2016, 114, pp. 12241239.
    28. 28)
      • 21. Tsybakov, A.B.: ‘Introduction à l'estimation non paramétrique’. in Hoffmann, M. (ed.): ‘Mathématiques et applicationsvol. 41, (Springer Science & Business Media, Berlin, Germany, 2003), pp. 211.
    29. 29)
      • 18. Ouarda, T.B.M.J., Charron, C., Shin, J.Y., et al: ‘Probability distributions of wind speed in the UAE’, Energy Convers. Manage., 2015, 93, pp. 414434.
    30. 30)
      • 8. Awad, A.S.A., El Fouly, T.H.M., Salama, M.M.A.: ‘Optimal ESS allocation for benefit maximization in distribution networks’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 16681678.
    31. 31)
      • 15. Awad, A.S.A., Ahmed, M.H., El Fouly, T.H.M., et al: ‘The impact of wind farm location and control strategy on wind generation penetration and market prices’, Renew. Energy, 2017, 106, pp. 354364.
    32. 32)
      • 14. Arefifar, S.A., Mohamed, Y.A.R.I., El Fouly, T.H.M.: ‘Comprehensive operational planning framework for self-healing control actions in smart distribution grids’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 41924200.
    33. 33)
      • 22. Devroye, L.: ‘Non-Uniform random variate generation’ (Springer, New York, 1986, 1st edn.).
    34. 34)
      • 10. Ruiz Rodriguez, F.J., Hernandez, J.C., Jurado, F.: ‘Harmonic modelling of PV systems for probabilistic harmonic load flow studies’, Int. J. Circuit Theory Appl., 2015, 43, (11), pp. 15411565.
    35. 35)
      • 4. Ding, Y., Wang, P., Goel, L., et al: ‘Long-term reserve expansion of power systems with high wind power penetration using universal generating function methods’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 766774.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5643
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5643
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address