http://iet.metastore.ingenta.com
1887

Maximum power extraction from a hydrokinetic energy conversion system

Maximum power extraction from a hydrokinetic energy conversion system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Hydrokinetic energy conversion systems capture the power available in the water flowing in waterways. An electrical interface for the power take-off of a hydrokinetic energy conversion system was designed and a control strategy for the maximum power extraction was investigated. A laboratory prototype was used for the experimental characterisation of the system. High efficiencies were observed because of the restricted flow conditions. The power curves obtained from the experimental results were used for the simulation of the system in MATLAB/Simulink. A ‘perturb and observe’ method was used for the maximum power point tracking (MPPT). A control scheme based on a heuristic algorithm suitable for restricted and turbulent water flows was developed. A practical advantage of this scheme is that it does not require the use of mechanical sensors. The MPPT of the laboratory prototype was simulated and experimental validation undertaken, with simulation and experimental results agreeing well. The MPPT of a full-scale hydrokinetic energy conversion system was simulated to assess its performance towards practical deployment.

References

    1. 1)
      • 1. Khan, M.J., Bhuyan, G., Iqbal, M.T., et al: ‘Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review’, Appl. Energy, 2009, 86, (10), pp. 18231835.
    2. 2)
      • 2. Khan, M.J., Iqbal, M.T., Quiacoe, J.E.: ‘Effects of efficiency nonlinearity on the overall power extraction: a case study of hydrokinetic-energy-conversion systems’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 911922.
    3. 3)
      • 3. Hauck, M., Rumeau, A., Bratcu, A.I., et al: ‘Identification and control of a river-current-turbine generator – application to a full-scale prototype’, IEEE Trans. Sustain. Energy, 2018, 9, (3), pp. 13651374.
    4. 4)
      • 4. Khan, M.J., Iqbal, M.T., Quiacoe, J.E.: ‘River current energy conversion systems: progress, prospects and challenges’, Renew. Sust. Energy Rev., 2008, 12, (8), pp. 21772193.
    5. 5)
      • 5. Anaya-Lara, O., Jenkins, N., Ekanayake, J., et al: ‘Wind energy generation: modelling and control’ (Wiley, UK, 2009).
    6. 6)
      • 6. Chowdhury, M.M., Haque, M.E., Saha, S., et al: ‘An enhanced control scheme for an IPM synchronous generator based wind turbine with MTPA trajectory and maximum power extraction’, IEEE Trans. Energy Convers., 2018, 33, (2), pp. 556566.
    7. 7)
      • 7. Whitby, B., Ugalde-Loo, C.E.: ‘Performance of pitch and stall regulated tidal stream turbines’, IEEE Trans. Sustain. Energy, 2014, 5, (1), pp. 6472.
    8. 8)
      • 8. Mirecki, A., Roboam, X., Richardeau, F.: ‘Architecture complexity and energy efficiency of small wind turbines’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 660670.
    9. 9)
      • 9. Bhende, C.N., Mishra, S., Malla, S.G.: ‘Permanent magnet synchronous generator-based standalone wind energy supply system’, IEEE Trans. Sustain. Energy, 2011, 2, (4), pp. 361373.
    10. 10)
      • 10. Koutroulis, E., Kalaitzakis, K.: ‘Design of a maximum power tracking system for wind-energy-conversion applications’, IEEE Trans. Ind. Electron., 2006, 53, (2), pp. 486494.
    11. 11)
      • 11. Putri, R.I., Pujiantara, M., Priyadi, A., et al: ‘Maximum power extraction improvement using sensorless controller based on adaptive perturb and observe algorithm for PMSG wind turbine application’, IET Electr. Power Appl., 2018, 12, (4), pp. 455462.
    12. 12)
      • 12. Daili, Y., Gaubert, G.-P., Rahmani, L.: ‘New control strategy for fast-efficient maximum power point tracking without mechanical sensors applied to small wind energy conversion system’, J. Renew. Sustain. Energy, 2015, 7, (4), p. 43102.
    13. 13)
      • 13. Hui, J.C.Y., Bakhshai, A., Jain, P.K.: ‘A sensorless adaptive maximum power point extraction method with voltage feedback control for small wind turbines in off-grid applications’, IEEE J. Emerg. Sel. Topics Power Electron., 2015, 3, (3), pp. 817828.
    14. 14)
      • 14. Kazmi, S.M.R., Goto, H., Guo, H.J., et al: ‘A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 2936.
    15. 15)
      • 15. Hussain, J., Mishra, M.K.: ‘Adaptive maximum power point tracking control algorithm for wind energy conversion systems’, IEEE Trans. Energy Convers., 2016, 31, (2), pp. 697705.
    16. 16)
      • 16. Mohamed, A.Z., Eskander, M.N., Ghali, F.A.: ‘Fuzzy logic control based maximum power tracking of a wind energy system’, Renew. Energy, 2001, 23, (2), pp. 235245.
    17. 17)
      • 17. Elnaggar, M., Saad, M.S., Fattah, H.A.A., et al: ‘L1 adaptive fuzzy control of wind energy conversion systems via variable structure adaptation for all wind speed regions’, IET Renew. Power Gener., 2017, 12, (1), pp. 1827.
    18. 18)
      • 18. Alvarez, A., Rico-Secades, M., Corominas, E.L., et al: ‘Design and control strategies for a modular hydrokinetic smart grid’, Int. J. Electr. Power Energy Syst., 2018, 95, pp. 137145.
    19. 19)
      • 19. Moreno Vásquez, F.A., De Oliveira, T.F., Brasil Junior, A.C.P.: ‘On the electromechanical behavior of hydrokinetic turbines’, Energy Convers. Manage., 2016, 115, pp. 6070.
    20. 20)
      • 20. Zhang, J., Leontidis, V., Dazin, A., et al: ‘Canal lock variable speed hydropower turbine design and control’, IET Renew. Power Gener., 2018, 12, (14), pp. 16981707.
    21. 21)
      • 21. Ashourianjozdani, M.H., Lopes, L.A.C., Pillay, P.: ‘Power control strategy for fixed-pitch PMSG-based hydrokinetic turbine’. Proc. 2016 IEEE Int. Conf. Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, December 2016, pp. 16.
    22. 22)
      • 22. Cavagnaro, R.J., Polagye, B., Thomson, J., et al: ‘Emulation of a hydrokinetic turbine to assess control and grid integration’. Proc. 11th European Wave and Tidal Energy Conf. (EWTEC), Nantes, France, September 2015, pp. 10A3-4-210A3-4-8.
    23. 23)
      • 23. Guo, B., Mohamed, A., Bacha, S., et al: ‘Variable speed micro-hydro power plant: modelling, losses analysis, and experiment validation’. Proc. 2018 IEEE Int. Conf. Industrial Technology (ICIT), Lyon, France, April 2018, pp. 10791084.
    24. 24)
      • 24. Borkowski, D.: ‘Maximum efficiency point tracking (MEPT) for variable speed small hydropower plant with neural network based estimation of turbine discharge’, IEEE Trans. Energy Convers., 2017, 32, (3), pp. 10901098.
    25. 25)
      • 25. Khan, M.J., Iqbal, M.T., Quiacoe, J.E.: ‘A technology review and simulation based performance analysis of river current turbine systems’. Proc. 2006 Canadian Conf. Electrical and Computer Engineering, Ottawa, Canada, May 2006, pp. 22882293.
    26. 26)
      • 26. Licari, J., Ugalde-Loo, C.E., Liang, J., et al: ‘Torsional damping considering both shaft and blade flexibilities’, Wind Eng., 2012, 36, (2), pp. 181196.
    27. 27)
      • 27. Licari, J., Ugalde-Loo, C.E., Ekanayake, J., et al: ‘Damping of torsional vibrations in a variable-speed wind turbine’, IEEE Trans. Energy Convers., 2013, 28, (1), pp. 172180.
    28. 28)
      • 28. Krishnan, R.: ‘Permanent magnet synchronous and brushless DC motor drives’ (Taylor & Francis, USA, 2010).
    29. 29)
      • 29. Melfi, M.J., Evon, S., McElveen, R.: ‘Induction versus permanent magnet motors’, IEEE Ind. Appl. Mag., 2009, 15, (6), pp. 2835.
    30. 30)
      • 30. Mohan, N., Undeland, T., Robbins, W.: ‘Power electronics-converters, applications and design’ (Wiley, USA, 1989).
    31. 31)
      • 31. LabJack Corporation, ‘USB multifunction DAQ’, https://labjack.com/products/u6, accessed 20th July 2018.
    32. 32)
      • 32. Harries, T., Kwan, A., Brammer, J., et al: ‘Physical testing of performance characteristics of a novel drag-driven vertical axis tidal stream turbine with comparisons to a conventional Savonius’, Int. J. Marine Energy, 2016, 14, pp. 215228.
    33. 33)
      • 33. Betz, A.: ‘Windenergie und ihre ausnutzung durch windmühlen’ (Vandenhoeck, Germany, 1926).
    34. 34)
      • 34. Runge, S., Stoesser, T., Morris, E., et al: ‘Technology readiness of a vertical-axis hydro-kinetic turbine’, J. Power Energy Eng., 2018, 6, (8), pp. 6385.
    35. 35)
      • 35. Knight, A.M., Peters, G.E.: ‘Simple wind energy controller for an expanded operating range’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 459466.
    36. 36)
      • 36. Rossander, M., Goude, A., Eriksson, S.: ‘Mechanical torque ripple from a passive diode rectifier in a 12 kW vertical axis wind turbine’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 164171.
    37. 37)
      • 37. Michas, M., Ugalde-Loo, C.E., Jenkins, N.: ‘Grid code compliance and ancillary services provision from DFIG and FRC-based wind turbines’. Proc. 2016 51st Int. Universities’ Power Engineering Conf. (UPEC), Coimbra, Portugal, September 2016, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5642
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5642
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address