http://iet.metastore.ingenta.com
1887

Impact of scaled fitness functions on a floating-point genetic algorithm to optimise the operation of standalone microgrids

Impact of scaled fitness functions on a floating-point genetic algorithm to optimise the operation of standalone microgrids

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Standalone hybrid remote area power systems, also known as microgrids (MGs), can provide reasonably priced electricity in geographically isolated and the edge of grid locations for their operators. To achieve the reliable operation of MGs, whilst consuming minimal fossil fuels and maximising the penetration of renewables, the voltage and frequency should be maintained within acceptable limits. This can be accomplished by solving an optimisation problem. Floating-point genetic algorithm (FP-GA) is a heuristic technique that has a proven track record of effectively identifying the optimal solutions. However, in addition to needing appropriate operators, the solver needs a fitness function to yield the most optimal control variables. In this study, a suitable fitness function is formulated, by including the operational, interruption and technical costs, which are then solved with an FP-GA, with different combinations of operators. The developed fitness function and the considered operators are tested for the non-linear optimisation problem of a 38-bus MG. Detailed discussions are provided on the impact, which different operators have upon the outcomes of the fitness function.

References

    1. 1)
      • 1. Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., et al: ‘Trends in microgrid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    2. 2)
      • 2. Lopes, J.P., Moreira, C., Madureira, A.: ‘Defining control strategies for microgrids islanded operation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 916924.
    3. 3)
      • 3. Qin, J., Ma, Q., Shi, Y., et al: ‘Recent advances in consensus of multi-agent systems: a brief survey’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 49724983.
    4. 4)
      • 4. Vandoorn, T.L., De Kooning, J.D.M, Meersman, B., et al: ‘Review of primary control strategies for islanded microgrids with power electronic interfaces’, Renew. Sustain. Energy Rev., 2013, 19, pp. 613628.
    5. 5)
      • 5. Lasseter, R.H.: ‘Smart distribution: coupled microgrids’, Proc. IEEE, 2011, 99, pp. 10741082.
    6. 6)
      • 6. Arefifar, S.A., Mohamed, Y.A.I., El-Fouly, T.H.M.: ‘Supply adequacy based optimal construction of microgrids in smart distribution systems’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14911502.
    7. 7)
      • 7. Katiraei, F., Iravani, R., Hatziargyriou, N., et al: ‘Microgrids management’, IEEE Power Energy Mag., 2008, 6, (3), pp. 5465.
    8. 8)
      • 8. Zhong, Q.C., Weiss, G.: ‘Static synchronous generators for distributed generation and renewable energy’. Power System Conf. & Exposition, Seattle, WA, USA, 2009, pp. 16.
    9. 9)
      • 9. Kim, Y.S., Kim, E.S., Moon, S.I.: ‘Frequency and voltage control strategy of standalone microgrids with high penetration of intermittent renewable generation systems’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 718728.
    10. 10)
      • 10. Augustine, S., Mishra, M.K., Lakshminarasamma, N.: ‘Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage standalone dc microgrid’, IEEE Trans. Sustain. Energy, 2015, 6, (1), pp. 132141.
    11. 11)
      • 11. Elrayyah, A., Cingoz, F., Soze, Y.: ‘Smart loads management using droop-based control in integrated microgrid systems’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (3), pp. 11421153.
    12. 12)
      • 12. Nutkani, I.U., Loh, P.C., Wang, P., et al: ‘Linear decentralized power sharing schemes for economic operation of ac microgrids’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 225234.
    13. 13)
      • 13. Karapetyan, A., Khonji, M., Cha, C., et al: ‘Efficient algorithm for scalable event-based demand response management in microgrids’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 27142725.
    14. 14)
      • 14. Solanki, B.V., Raghurajan, A.: ‘Including smart loads for optimal demand response in integrated energy management systems for isolated microgrids’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 17391748.
    15. 15)
      • 15. Abdelaziz, M.M.A., El-Saadany, E.F.: ‘Economic droop parameter selection for autonomous microgrids including wind turbines’, Renew. Energy, 2015, 82, pp. 108113.
    16. 16)
      • 16. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop controlled ac and dc microgrids’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    17. 17)
      • 17. Visscher, K., Haan, S.D.: ‘Virtual synchronous machines for frequency stabilization in future grids with a significant share of decentralized generation’. IET CIRED Seminar, Frankfurt, Germany, 2008.
    18. 18)
      • 18. Chandorkar, M.C., Divan, D.M., Adapa, R.: ‘Control of parallel connected inverters in standalone ac system’, IEEE Trans. Ind. Appl., 1993, 29, (1), pp. 136143.
    19. 19)
      • 19. Moradi, M.H., Abedini, M., Hosseinian, S.M.: ‘Optimal operation of autonomous microgrids using HS-GA’, Int. J. Electr. Power Energy Syst., 2016, 77, pp. 210220.
    20. 20)
      • 20. Anvari-Moghadam, A., Shafiee, Q., Vasquez, J.C., et al: ‘Optimal adaptive control for effective load sharing in microgrids’. 42nd Annual Conf. of IEEE Industrial Electronics Society, Florence, Italy, 2016.
    21. 21)
      • 21. Hong, Y., Hsiao, M., Chang, Y., et al: ‘Multiscenerio under frequency load shedding in a microgrid consisting of intermittent renewables’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 16101617.
    22. 22)
      • 22. Zhou, Q., Bialek, J.W.: ‘Generation curtailment to manage voltage constraints in distribution networks’, IET Gener. Transm. Distrib., 2007, 1, (3), pp. 492498.
    23. 23)
      • 23. Mehar, T.H., Gosh, A., Shahnia, F.: ‘Cooperative control of battery energy storage system’, Int. J. Electr. Power Energy Syst., 2017, 87, pp. 109120.
    24. 24)
      • 24. Sharma, R.K., Mishra, S.: ‘Dynamic power management and control of a PV PEM fuel-cell-based standalone ac/dc microgrid using hybrid energy storage’, IEEE Trans. Ind. Appl., 2018, 54, (1), pp. 526538.
    25. 25)
      • 25. Astapov, V., Palu, I.: ‘Operation and stability analysis for standalone microgrid through simulations in DigSilent software’. 18th Int. Scientific Conf. on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 2017.
    26. 26)
      • 26. Kalla, U.K., Singh, B., Sreenivasa Murthy, S., et al: ‘Adaptive sliding mode control of standalone single-phase microgrid using hydro, wind, and solar pv array-based generation’, IEEE Trans. Smart Grid, 2018, 9, (6), pp. 68066814.
    27. 27)
      • 27. El-Bidairi, K.S., Nguyen, H.D., Jayasinghe, S.D.G., et al: ‘Impact of tidal energy on battery sizing in standalone microgrids: a case study’. IEEE Int. Conf. on Environment and Electrical Engineering (ICEEE), Palermo, Italy, 2018.
    28. 28)
      • 28. Nikmehr, N., Ravadanegh, S.N.: ‘Optimal operation of distributed generations in micro-grids under uncertainties in load and renewable power generation using heuristic algorithm’, IET Renew. Power Gener., 2015, 9, (8), pp. 982990.
    29. 29)
      • 29. Suhane, P., Rangnekar, S., Mittal, A., et al: ‘Sizing and performance analysis of standalone wind-photovoltaic based hybrid energy system using ant colony optimisation’, IET Renew. Power Gener., 2016, 10, (7), pp. 964972.
    30. 30)
      • 30. Ma, G., Xu, G., Chen, Y., et al: ‘Multi-objective optimal configuration method for a standalone wind-solar-battery hybrid power system’, IET Renew. Power Gener., 2017, 11, (1), pp. 194202.
    31. 31)
      • 31. Satapathy, P., Dhar, S., Dash, P.K.: ‘Stability improvement of PV-BESS diesel generator-based microgrid with a new modified harmony search-based hybrid firefly algorithm’, IET Renew. Power Gener., 2017, 11, (5), pp. 566577.
    32. 32)
      • 32. Hassan, M.A., Abido, M.A.: ‘Optimal design of microgrids in autonomous and grid-connected modes using particle swarm optimization’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 755769.
    33. 33)
      • 33. Chung, I.Y., Liu, W., Cartes, D.A., et al: ‘Control methods of inverter-interfaced distributed generators in a microgrid system’, IEEE Trans. Ind. Appl., 2010, 46, (3), pp. 10781088.
    34. 34)
      • 34. Zhao, B., Zhang, X., Chen, J., et al: ‘Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 934943.
    35. 35)
      • 35. Ayman, H., Fathi, M., Beshr, E., et al: ‘Multi-objective optimization of islanded microgrids’. IEEE Int. Conf. on Electrical, Computer and Communication Technologies, Coimbatore, India, 2015.
    36. 36)
      • 36. Mohsenzadeh, A., Pang, C., Haghifam, M.R.: ‘Determining optimal forming of flexible microgrids in the presence of demand response in smart distribution systems’, IEEE Syst. J., 2018, 12, (4), pp. 33153323.
    37. 37)
      • 37. Bilil, H., Aniba, G., Gharavi, H.: ‘Dynamic appliances scheduling in collaborative microgrids system’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 22762287.
    38. 38)
      • 38. Nemati, M., Bennimar, K., Tenbohlen, S., et al: ‘Optimization of microgrids short term operation based on an enhanced genetic algorithm’. IEEE PowerTech Conf., Eindhoven, 2015.
    39. 39)
      • 39. Zhao, Z., Yang, P., Wang, Y., et al: ‘Dynamic characteristics analysis and stabilization of PV-based multiple microgrid clusters’, IEEE Trans. Smart Grid, 2019, 10, (1), pp. 805818.
    40. 40)
      • 40. Mahanti, G.K., Chakraborty, A., Das, S.: ‘Floating-point genetic algorithm for design of a reconfigurable antenna arrays by phase-only control’. 37th IEEE Conf. on Software Engineering, Suzhou, China, 2005.
    41. 41)
      • 41. Soliman, S.A.H., Mantawy, A.A.H.: ‘Modern optimization techniques with applications in electric power system’ (Springer, USA, 2012).
    42. 42)
      • 42. Zhu, J.: ‘Optimization of power system operation’ (Wiley-IEEE Press, Canada, 2015).
    43. 43)
      • 43. Song, H., Hu, Y., Jiang, C.: ‘An automatic scaling method for obtaining the trace and parameters from oblique ionogram based on hybrid genetic algorithm’, Radio Sci., 2016, 51, (12), pp. 18381854.
    44. 44)
      • 44. Fan, W., Fox, E.A., Pathak, P., et al: ‘The effects of fitness functions on genetic programming-based ranking discovery for web search’, J. Am. Soc. Inf. Sci. Technol., 2004, 55, (7), pp. 628636.
    45. 45)
      • 45. Kreinovich, V., Quintana, C., Fuentes, O.: ‘Genetic algorithms: what fitness scaling is optimal?’, Int. J. Cybernet. Syst., 1993, 24, pp. 929.
    46. 46)
      • 46. HaoYin, G., Kai-Xia, Y., GongXiao, W., et al: ‘Parameters selection of fitness scaling in genetic algorithm and its application’. Chinese Control and Decision Conf. (CCDC), Xuzhou, China, 2010.
    47. 47)
      • 47. Zhang, X., Zhang, J., Gong, Y., et al: ‘Kuhn-Munkres parallel genetic algorithm for the set cover problem and its application to large-scale wireless sensor networks’, IEEE Trans. Evolut. Comput., 2016, 20, (5), pp. 695710.
    48. 48)
      • 48. Sadjadi, F.A.: ‘Comparison of fitness scaling in genetic algorithms with applications to optical processing’, Proc. SPIE, 2004, 5557, pp. 356364.
    49. 49)
      • 49. Anderson, P.M., Bose, A.: ‘Stability simulation of wind turbine systems’, IEEE Trans. Power Appar. Syst., 1983, PAS-102, pp. 37913795.
    50. 50)
      • 50. Shahariar, G.M.H., Hasan, M.R.: ‘Design and construction of a vertical axis wind turbine’. 9th Int. Forum on Strategic Technology, 2014, pp. 326329.
    51. 51)
      • 51. Shahnia, F., Bourbour, S., Ghosh, A.: ‘Coupling neighboring microgrids for overload management based on dynamic multicriteria decision-making’, IEEE Trans. Smart Grid, 2017, 8, (2), pp. 969983.
    52. 52)
      • 52. Arefi, A., Shahnia, F.: ‘Tertiary controller based optimal voltage and frequency management technique for multi microgrid systems of large remote towns’, IEEE Trans. Smart Grid, 2017, doi: 10.1109/TSG.2017.2700054.
    53. 53)
      • 53. Djurovic, M.Z., Milacic, A., Krsulja, M.: ‘A simplified model of quadratic cost function for thermal generators’. Proc. of the 23rd Int. DAAAM Symp., Vienna, Austria, 2012, vol. 23, (1), pp. 14.
    54. 54)
      • 54. Wireless Networks, ABB, 2017. Available at http://new.abb.com/network-management/communication-networks/wireless-networks.
    55. 55)
      • 55. Industrial Wireless communication, Siemens, 2017. Available at http://w3.siemens.com/mcms/automation/en/industrial-communications/industrial-wireless-communication/pages/industrial-wireless-communication.aspx.
    56. 56)
      • 56. Review of the frequency operating standard, Stage one determination’, Australian Energy Market Commission, Technical report, 2017, Retrieved 25/06/2018. Available at https://www.aemc.gov.au/sites/default/files/content/ce48ba94-b3a9-4991-9ef9-e05814a78526/REL0065-Review-of-the-Frequency-Operating-Standard-Final-for-publi.pdf.
    57. 57)
      • 57. ‘AS 60038-2012 Standard Voltages from SAI Global’, Retrieved 30/06/2018. Available at https://infostore.saiglobal.com/store/PreviewDoc.aspx?saleItemID=2523963.
    58. 58)
      • 58. Batool, M., Islam, S., Shahnia, F.: ‘Stochastic modeling of the output power of photovoltaic generators in various weather conditions’. 26th Australian Universities Power Engineering Conf., 2016.
    59. 59)
      • 59. Katiraei, F., Abbey, C.: ‘Diesel plant sizing and performance analysis of a remote wind-diesel microgrid’. IEEE-PES General Meeting, 2007.
    60. 60)
      • 60. Mumtaz, F., Syed, M.H., Al Hosani, M., et al: ‘A novel approach to solve power flow for islanded microgrids using modified Newton Raphson with droop control of DG’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 493503.
    61. 61)
      • 61. Lee, K.Y., El-Sharkawi, M.A.: ‘Modern heuristic optimization techniques: theory and applications to power systems’, 2008.
    62. 62)
      • 62. Gen, M., Cheng, R.: ‘Genetic algorithm and engineering optimization’ (John Wily and Sons, New York, 2000).
    63. 63)
      • 63. Heilmann, R.: ‘A branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time lags’, Eur. J. Oper. Res., 2003, 144, pp. 348365.
    64. 64)
      • 64. Mak, K.L., Wong, Y.S., Wang, X.X.: ‘An adaptive genetic algorithm for manufacturing cell formation’, Int. J. Manuf. Technol., 2000, 16, pp. 491497.
    65. 65)
      • 65. Kim, K.W., Gen, M., Kim, M.H.: ‘Adaptive genetic algorithms for multi-resource constrained project scheduling problem with multiple modes’, Int. J. Innov. Comput., Inf. Control, 2006, 2, (1), pp. 13494198.
    66. 66)
      • 66. Zhang, W., Chen, W., Wang, Y.: ‘The adaptive genetic algorithms for portfolio selection problem’, Int. J. Comput. Sci. Netw. Secur., 2006, 6, (1), pp. 196200.
    67. 67)
      • 67. Matlab Genetic Algorithm Toolbox, 2016. Available at https://au.mathworks.com/help/gads/genetic-algorithm-options.html.
    68. 68)
      • 68. Li, C., et al: ‘Power flow analysis for low-voltage ac and dc microgrids considering droop control and virtual impedance’, IEEE Trans. Smart Grid, 2016, 8, (6), pp. 27542764.
    69. 69)
      • 69. Intel Hardware, Software and Technologies for Industrial Automation, Intel® Webiste, 2017. Retrieved 25/06/2018. Available at https://www-ssl.intel.com/content/www/us/en/industrial-automation/products-and-solutions/hardware-software-technologies.html.
    70. 70)
      • 70. Industrial Controllers, National InstrumentsTM website, 2017. Retrieved 25/06/2018. Available at http://www.ni.com/industrial-controller.
    71. 71)
      • 71. Process Control and Industrial Automation, Analog DevicesTM website, 2017. Retrieved 25/06/2018. Available at http://www.analog.com/en/applications/markets/process-control-and-industrial-automation.html.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5519
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5519
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address