Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free High efficiency quantum well triple junction tandem solar cell

The efficiency of solar cell depends on how the different portions of the solar spectrum are converted to electric energy. The efficiency of solar cell can be increased by using multi-solar cells in tandem configuration or tandem solar cell. The device structure and material choice of tandem solar cell can affect their efficiency. Incorporating quantum well in the solar cell structure also affects their efficiency. This work proposed a new solar cell structure with efficiency 47%, which is very promising. Different materials of the cell and the embedded quantum well will help to increase the efficiency of this solar cell. The fabrication of the cell is less complicated than other promising solar cell because of single quantum well structure. Comparison with other published work also shows the improved performance of this cell.

References

    1. 1)
      • 2. Luque, A., Marti, A.: ‘Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels’, Phys. Rev. Lett., 1997, 78, (26), pp. 50145017.
    2. 2)
      • 15. Barnham, K.W.J., Abbott, P., Ballard, I., et al: ‘Recent results on quantum well solar cells’. Proc. of 3rd World Conf. on photovoltaic Energy Conversion, 11–18th May, 2003.
    3. 3)
      • 7. Varonides, A.C.: ‘High efficiency multijuncton tandem solar cells with embedded short-period superlattices’. World Renewable Energy Congress, Linkoping, Sweden, May 2011, pp. 813.
    4. 4)
      • 4. Luque, A., Marti, A., Ĺopez, N., et al: ‘Operation of the intermediate band solar cell under non-ideal space charge region conditions and half filling of the intermediate band’, J. Appl. Phys., 2006, 99, (9), pp. 094503-1094503-9.
    5. 5)
      • 12. Browne, B., Ioannides, A., Connolly, J., et al: ‘Tandem quantum well solar cells’. IEEE Photovoltaic Specialists Conf., June 2008.
    6. 6)
      • 6. Singh, A.K., Tiwari, J., Yadav, A., et al: ‘MATLAB user interface for simulation of silicon germanium solar cell’, J. Mater., 2015, 2015, Article ID 840718, pp. 16.
    7. 7)
      • 17. Kurtz, S.R., Faine, P., Olson, J.M.: ‘Modeling of two-junction, series-connected tandem solar cells using top-cell thickness as an adjustable parameter’, J. Appl. Phys., 1990, 68, p. 1890.
    8. 8)
      • 14. Freundlich, A.: ‘Mulyi-quantum well tandem solar cell’, US Patent, US6147296A, University of Houston.
    9. 9)
      • 8. You, J., Dou, L., Hong, Z., et al: ‘Recent trends in polymer tandem solar cells research’, Prog. Polym. Sci., 2013, 38, pp. 19091928.
    10. 10)
      • 9. Ehrler, B.: ‘Efficiency limit of perovskite/Si tandem solar cells’, ACS Energy Lett., 2016, 1, pp. 863838.
    11. 11)
      • 13. Essig, S, Ward, S., Steiner, M.A., et al: ‘Progress towards a 30% efficient GaInP/Si tandem solar cell’, Energy Proc., 2015, 77, pp. 464469.
    12. 12)
      • 10. Futscher, M.H., Ehrler, B.: ‘Modeling the performance limitations and prospects of perovskite/Si tandem solar cells under realistic operating conditions’, ACS Energy Lett., 2017, 2, (9), pp. 20892095.
    13. 13)
      • 11. Bradshaw, G.K., Samberg, J.P., Zachary Carlin, C., et al: ‘Gainp/GaAs tandem solar cells with InGaAs/GaAsP mutiple quantum wells’, IEEE J. Photovoltaics, 2014, 4, (2), pp. 614619.
    14. 14)
      • 19. Lin, C.-C., Tan, M.-H., Tsai, C.-P., et al: ‘Numerical study of quantum-Dot-embedded solar cell’, IEEE J. Sel. Top. Quantum Electron., 2013, 19, p. 5.
    15. 15)
      • 5. Yamaguchi, M., Takamoto, T., Araki, K., et al: ‘Multi-junction II-V solar cells: current status and future potential’, Sol. Energy, 2005, 79, pp. 7885.
    16. 16)
      • 1. Rühle, S.: ‘Tabulated values of the shockley-queisser limit for single junction solar cells’, Sol. Energy, 2016, 130, pp. 139147.
    17. 17)
      • 16. Fujii, H., Toprasertpong, K., Wang, Y., et al: ‘100-period, 1.23 –eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current matched Ge-based tandem cells’, Prog. Photovolt., 2014, 22, (7), pp. 784795.
    18. 18)
      • 18. Blokhin, S.A., Sakharov, A.V., Nadtochy, A.M., et al: ‘Algaas/GaAs photovoltaic cells with an array of InGaAs QDs’, Semiconductors, 2009, 43, (4), pp. 514518.
    19. 19)
      • 3. Cuadra, L., Marti, A., Luque, A.: ‘Present status of intermediate band solar cell research’, Thin Solid Films, 2004, 451–452, pp. 593599.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5475
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5475
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address