http://iet.metastore.ingenta.com
1887

High efficiency quantum well triple junction tandem solar cell

High efficiency quantum well triple junction tandem solar cell

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The efficiency of solar cell depends on how the different portions of the solar spectrum are converted to electric energy. The efficiency of solar cell can be increased by using multi-solar cells in tandem configuration or tandem solar cell. The device structure and material choice of tandem solar cell can affect their efficiency. Incorporating quantum well in the solar cell structure also affects their efficiency. This work proposed a new solar cell structure with efficiency 47%, which is very promising. Different materials of the cell and the embedded quantum well will help to increase the efficiency of this solar cell. The fabrication of the cell is less complicated than other promising solar cell because of single quantum well structure. Comparison with other published work also shows the improved performance of this cell.

References

    1. 1)
      • 1. Rühle, S.: ‘Tabulated values of the shockley-queisser limit for single junction solar cells’, Sol. Energy, 2016, 130, pp. 139147.
    2. 2)
      • 2. Luque, A., Marti, A.: ‘Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels’, Phys. Rev. Lett., 1997, 78, (26), pp. 50145017.
    3. 3)
      • 3. Cuadra, L., Marti, A., Luque, A.: ‘Present status of intermediate band solar cell research’, Thin Solid Films, 2004, 451–452, pp. 593599.
    4. 4)
      • 4. Luque, A., Marti, A., Ĺopez, N., et al: ‘Operation of the intermediate band solar cell under non-ideal space charge region conditions and half filling of the intermediate band’, J. Appl. Phys., 2006, 99, (9), pp. 094503-1094503-9.
    5. 5)
      • 5. Yamaguchi, M., Takamoto, T., Araki, K., et al: ‘Multi-junction II-V solar cells: current status and future potential’, Sol. Energy, 2005, 79, pp. 7885.
    6. 6)
      • 6. Singh, A.K., Tiwari, J., Yadav, A., et al: ‘MATLAB user interface for simulation of silicon germanium solar cell’, J. Mater., 2015, 2015, Article ID 840718, pp. 16.
    7. 7)
      • 7. Varonides, A.C.: ‘High efficiency multijuncton tandem solar cells with embedded short-period superlattices’. World Renewable Energy Congress, Linkoping, Sweden, May 2011, pp. 813.
    8. 8)
      • 8. You, J., Dou, L., Hong, Z., et al: ‘Recent trends in polymer tandem solar cells research’, Prog. Polym. Sci., 2013, 38, pp. 19091928.
    9. 9)
      • 9. Ehrler, B.: ‘Efficiency limit of perovskite/Si tandem solar cells’, ACS Energy Lett., 2016, 1, pp. 863838.
    10. 10)
      • 10. Futscher, M.H., Ehrler, B.: ‘Modeling the performance limitations and prospects of perovskite/Si tandem solar cells under realistic operating conditions’, ACS Energy Lett., 2017, 2, (9), pp. 20892095.
    11. 11)
      • 11. Bradshaw, G.K., Samberg, J.P., Zachary Carlin, C., et al: ‘Gainp/GaAs tandem solar cells with InGaAs/GaAsP mutiple quantum wells’, IEEE J. Photovoltaics, 2014, 4, (2), pp. 614619.
    12. 12)
      • 12. Browne, B., Ioannides, A., Connolly, J., et al: ‘Tandem quantum well solar cells’. IEEE Photovoltaic Specialists Conf., June 2008.
    13. 13)
      • 13. Essig, S, Ward, S., Steiner, M.A., et al: ‘Progress towards a 30% efficient GaInP/Si tandem solar cell’, Energy Proc., 2015, 77, pp. 464469.
    14. 14)
      • 14. Freundlich, A.: ‘Mulyi-quantum well tandem solar cell’, US Patent, US6147296A, University of Houston.
    15. 15)
      • 15. Barnham, K.W.J., Abbott, P., Ballard, I., et al: ‘Recent results on quantum well solar cells’. Proc. of 3rd World Conf. on photovoltaic Energy Conversion, 11–18th May, 2003.
    16. 16)
      • 16. Fujii, H., Toprasertpong, K., Wang, Y., et al: ‘100-period, 1.23 –eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current matched Ge-based tandem cells’, Prog. Photovolt., 2014, 22, (7), pp. 784795.
    17. 17)
      • 17. Kurtz, S.R., Faine, P., Olson, J.M.: ‘Modeling of two-junction, series-connected tandem solar cells using top-cell thickness as an adjustable parameter’, J. Appl. Phys., 1990, 68, p. 1890.
    18. 18)
      • 18. Blokhin, S.A., Sakharov, A.V., Nadtochy, A.M., et al: ‘Algaas/GaAs photovoltaic cells with an array of InGaAs QDs’, Semiconductors, 2009, 43, (4), pp. 514518.
    19. 19)
      • 19. Lin, C.-C., Tan, M.-H., Tsai, C.-P., et al: ‘Numerical study of quantum-Dot-embedded solar cell’, IEEE J. Sel. Top. Quantum Electron., 2013, 19, p. 5.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5475
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5475
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address