Effects of modulation techniques on leakage ground currents in a grid-tied transformerless HB-NPC inverter

Effects of modulation techniques on leakage ground currents in a grid-tied transformerless HB-NPC inverter

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this paper, a comparative study of modulation techniques used in a transformerless H-bridge neutral point clamped (HB-NPC) multilevel inverters is presented. Transformerless inverters, usually found in photovoltaic (PV) applications, are more efficient and economically affordable than isolated systems. Nevertheless, they may cause leakage ground currents. The latter are produced by the stray capacitances formed between the PV panel frame and the ground path. There are different ways to overcome the leakage ground current issue in transformerless topologies, for instance using topologies that generate almost zero leakage currents, by using adequate modulation techniques, by inserting additional filters, and by using adequate control schemes, among others. The comparative study, considers five modulation strategies, namely, level-shifted pulse-width modulation (PWM), phase-shifted PWM, three-level PWM, two sectors hybrid PWM and six sectors hybrid PWM. As it will be demonstrated through the common-mode model analysis, the three last modulations strategies are aimed at alleviating the leakage ground current issue. In this study, the two sectors hybrid PWM and the six sectors hybrid PWM are proposed. These modulation techniques lead to obtaining five output voltage levels keeping the RMS value of the leakage currents bounded for the transformerless HB-NPC inverter.


    1. 1)
      • 1. Islam, M., Mekhilef, S.: ‘An improved transformerless grid connected photovoltaic inverter with reduced leakage current’, Energy Convers. Manage., 2014, 88, pp. 854862.
    2. 2)
      • 2. Vazquez-Guzman, G., Martinez-Rodriguez, P.R., Sosa-Zuñiga, J.M.: ‘High efficiency single-phase transformer-less inverter for photovoltaic applications’, Ingeniera, Investigación Tecnol., 2015, 16, pp. 173184.
    3. 3)
      • 3. Rahimi, R., Farhangi, S., Farhangi, B., et al: ‘H8 inverter to reduce leakage current in transformerless three-phase grid-connected photovoltaic systems’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6, (2), pp. 910918early view.
    4. 4)
      • 4. Victor, M., Greizer, F., Bremicker, S., et al: ‘Method of converting a direct current voltage from a source of direct current voltage, more specifically from a photovoltaic source of direct current voltage, into a alternating current voltage’. U.S. Patent No. 7,411,802, 2008.
    5. 5)
      • 5. Schmidt, H., Siedle, C., Ketterer, J.: ‘DC/AC converter to convert direct electric voltage into alternating voltage or into alternating current’. U.S. Patent No. 7,046,534, 2006.
    6. 6)
      • 6. Lopez, O., Freijedo, F.D., Yepes, A.G., et al: ‘Eliminating ground current in a transformerless photovoltaic application’, IEEE Trans. Energy Convers., 2010, 25, (1), pp. 140147.
    7. 7)
      • 7. Escobar, G., Guzman, G.V., Mazun, E.P., et al: ‘A single-phase asymmetrical T-type five-level transformerless PV inverter’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6, (1), pp. 140150.
    8. 8)
      • 8. Karraker, D.W., Gokhale, K.P., Jussila, M.T.: ‘A model-based controller for the cascade H-bridge multilevel converter used as a shunt active filter’. U.S. Patent Application No. 13/151,766, 2011.
    9. 9)
      • 9. Lau, W.H., Zhou, B., Lee, C.K., et al: ‘Realization of a five-level NPC inverter using carrier phase-shift technique’. Proc. 2002 IEEE Conf. on Computers, Communications, Control and Power Engineering TENCON'02, Beijing, China, 2002, vol. 3, pp. 19781981.
    10. 10)
      • 10. Kouro, S., Leon, J.I., Vinnikov, D., et al: ‘Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology’, IEEE Ind. Electron. Mag., 2015, 9, (1), pp. 4761.
    11. 11)
      • 11. Rojas, C.A., Aguirre, M., Kouro, S., et al: ‘Leakage current mitigation in photovoltaic string inverter using predictive control with fixed average switching frequency’, IEEE Trans. Ind. Electron., 2017, 64, (12), pp. 93449354.
    12. 12)
      • 12. Giacomini, J.C., Michels, L., Pinheiro, H., et al: ‘Design methodology of a passive damped modified LCL filter for leakage current reduction in grid-connected transformerless three-phase PV inverters’, IET Renew. Power Gener., 2017, 11, (14), pp. 17691777.
    13. 13)
      • 13. Hedayati, M.H., John, V.: ‘EMI and ground leakage current reduction in single-phase grid-connected power converter’, IET Power Electron., 2017, 10, (8), pp. 938944.
    14. 14)
      • 14. Guo, X.: ‘A novel CH5 inverter for single-phase transformerless photovoltaic system applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (10), pp. 11971201.
    15. 15)
      • 15. Guo, X.: ‘Three-phase CH7 inverter with a new space vector modulation to reduce leakage current for transformerless photovoltaic systems’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (2), pp. 708712.
    16. 16)
      • 16. Erginer, V., Sarul, M.H.: ‘A novel reduced leakage current modulation technique for Z-source inverter used in photovoltaic systems’, IET Power Electron., 2013, 7, (3), pp. 496502.
    17. 17)
      • 17. Sonti, V., Jain, S., Bhattacharya, S.: ‘Analysis of the modulation strategy for the minimization of the leakage current in the PV grid-connected cascaded multilevel inverter’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 11561169.
    18. 18)
      • 18. Guo, X., Jia, X.: ‘Hardware-based cascaded topology and modulation strategy with leakage current reduction for transformerless PV systems’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 78237832.
    19. 19)
      • 19. Selvamuthukumaran, R., Garg, A., Gupta, R.: ‘Hybrid multicarrier modulation to reduce leakage current in a transformerless cascaded multilevel inverter for photovoltaic systems’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 17791783.
    20. 20)
      • 20. Martinez-Rodriguez, P.R., Escobar-Valderrama, G., Sosa-Zuñiga, J.M., et al: ‘Analysis and experimental validation of a controller for a single-phase active power filter based on a 3L-NPC topology’, Int. Trans. Electr. Energy Syst., 2017, 27, (11), pp. 117.
    21. 21)
      • 21. Dke deustche kommission elektrotechnik elektronik informationstechnik im DIN und VDE 0126-1-1, VDE 0126-1-1, 2005.
    22. 22)
      • 22. Martinez-Garcia, J.F., Martinez-Rodriguez, P.R., Valdez-Fernandez, A.A., et al: ‘Controlador para inyeccion de corriente a la Red con topologia 5L-HNPC’, Congreso Nacional de Control Automatico, AMCA, Mexico, Monterrey, 2017, 4, (6), pp. 386391.
    23. 23)
      • 23. Latran, M.B., Teke, A.: ‘Investigation of multilevel multifunctional grid connected inverter topologies and control strategies used in photovoltaic systems’, Renew. Sust. Energy Rev., 2015, 42, pp. 361376.
    24. 24)
      • 24. Ahmad, Z., Singh, S.N.: ‘An improved single phase transformerless inverter topology for grid connected PV system with reduce leakage current and reactive power capability’, Sol. Energy, 2017, 157, pp. 133146.
    25. 25)
      • 25. Li, W., Gu, Y., Luo, H., et al: ‘Topology review and derivation methodology of single-phase transformerless photovoltaic inverters for leakage current suppression’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 45374551.
    26. 26)
      • 26. Noroozi, N., Zolghadri, M.R., Yaghoubi, M.: ‘A novel modulation method for reducing common mode voltage in three-phase inverters’. Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Italy, Milan, 2017, pp. 15.
    27. 27)
      • 27. Martino, M., Citro, C., Rouzbehi, K., et al: ‘Efficiency analysis of single-phase photovoltaic transformer-less inverters’, Eur. Assoc. Dev. Renew. Energy Environ. Power Qual., 2012, 1, (10), pp. 15691574.
    28. 28)
      • 28. IEEE Industry Applications Society, Power System Technologies Committee: ‘IEEE recommended practice for grounding of industrial and commercial power systems’, vol. 142 (The Institute of Electrical and Electronics Engineers, Inc. (IEEE), USA, 2007).
    29. 29)
      • 29. Ball, G., Zgonena, T., Flueckiger, C.: ‘Photovoltaic module grounding: issues and recommendations’, Solar America Board for Codes and Standards, 2012.

Related content

This is a required field
Please enter a valid email address