Assessment of wind turbine transient overvoltages when struck by lightning: experimental and analytical study

Assessment of wind turbine transient overvoltages when struck by lightning: experimental and analytical study

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper is aimed at presenting a numerical method for calculating the transient overvoltage across a wind turbine (WT) struck by lightning. The resulting overvoltage is determined at different points along the WT body using the proposed numerical method. The lightning strike has been simulated by injecting a current impulse to the tested WT. The equivalent circuits of WT components and the mathematical formulas to evaluate the circuit's parameters are presented. This makes it possible to develop π-equivalent RLC networks representing the WT components to write the nodal equations at each discrete time instant. MATLAB software package is used to solve the nodal equations and determine the transient behaviour of the WT. In the laboratory, a high impulse voltage is applied on a small-scale WT to corroborate the proposed method. The calculated overvoltage temporal variations are in good agreement with those measured at different positions along the WT for various grounding resistance values, demonstrating the validity of the proposed method. Further validation is also made by comparing the present simulation with that using PSCAD/EMTDC software package. The overvoltage values increase with the rise of the grounding resistance value. The obtained results are useful for designing WT lightning protection systems.


    1. 1)
      • 1. Yang, Q., Tao, J., He, Y., et al: ‘Analysis and suppression measures of lightning transient overvoltage in the signal cable of wind turbines’, Wind Energy, 2018, 21, (4), pp. 211225.
    2. 2)
      • 2. Nguyen, T., Pham, T., Tran, T.V., et al: ‘Lightning protection for wind turbines in Vietnam’, J. Int. Council Electr. Eng., 2017, 7, (1), pp. 2933.
    3. 3)
      • 3. Yehia, D.M., Mansour, D.E.A., Yuan, W.: ‘Fault ride-through enhancement of PMSG wind turbines with DC microgrids using resistive-type SFCL’, IEEE Trans. Appl. Supercond., 2018, 28, (4), pp. 15.
    4. 4)
      • 4. Vladimir, A.R., Martin, A.U.: ‘Lightning physics and effects lightning’ (Cambridge University Press, Cambridge, 2003).
    5. 5)
      • 5. Vita, V., Ekonomou, L., Christodoulou, C.A.: ‘The impact of distributed generation to the lightning protection of modern distribution lines’, Energy Syst., 2016, 7, (2), pp. 357364.
    6. 6)
      • 6. Vita, V., Maris, T.I.: ‘Sensitivity analyses of parameters that affect the lightning performance of distribution networks with distributed generation’, J. Multidisciplinary Eng. Sci. Studies (JMESS), 2016, 2, (8), pp. 774781.
    7. 7)
      • 7. IEC TR 61400–24: ‘Wind turbines – part 24: lightning protection’, 2010, vol. 7, p. 158.
    8. 8)
      • 8. Yasuda, Y., Funabashi, T.: ‘Transient analysis on wind farm suffered from lightning’. 39th Int. Universities Power Engineering Conf. (UPEC), Bristol, UK, 6–8 September 2004, pp. 202206.
    9. 9)
      • 9. Zalhaf, A.S., Abdel-Salam, M., Ahmed, M., et al: ‘Computation of transient induced voltages along a wind turbine struck by lightning’. 2nd Int. Conf. on Power and Renewable Energy (ICPRE), Chengdu, China, 20–23 September 2017, pp. 270275.
    10. 10)
      • 10. Poljak, D., Cavka, D.: ‘Electromagnetic compatibility aspects of wind turbine analysis and design’, in Ochsner, A., Altenbach, H. (EDs.): ‘Properties and characterization of modern materials’ (Springer, Singapore, 2017), pp. 345369.
    11. 11)
      • 11. Jiang, J.L., Chang, H.C., Kuo, C.C., et al: ‘Transient overvoltage phenomena on the control system of wind turbines due to lightning strike’, Renew. Energy, 2013, 57, pp. 181189.
    12. 12)
      • 12. Cooray, V., Cooray, C., Andrews, C.J.: ‘Lightning caused injuries in humans’, J. Electrost., 2007, 65, (5–6 SPEC. ISS.), pp. 386394.
    13. 13)
      • 13. Zhang, X.: ‘Calculation of transient electric field inside the building struck by lightning’. 3rd Int. Symp. on Electromagnetic Compatibility, Beijing, China, 21–24 May 2002, pp. 290293.
    14. 14)
      • 14. Baker, A.M.A., Alam, M.S., Tanrioven, M., et al: ‘Electromagnetic compatibility analysis in buildings affected by lightning strike’, Electr. Power Syst. Res., 2005, 73, (2), pp. 197204.
    15. 15)
      • 15. Maslowski, G., Rakov, V.A., Wyderka, S., et al: ‘Current impulses in the lightning protection system of a test house in Poland’, IEEE Trans. Electromagn. Compat., 2015, 57, (3), pp. 425433.
    16. 16)
      • 16. Maslowski, G., Wyderka, S., Ziemba, R., et al: ‘Measurements and modeling of current impulses in the lightning protection system and internal electrical installation equipped with household appliances’, Electr. Power Syst. Res., 2016, 139, pp. 8792.
    17. 17)
      • 17. Zhang, X., Zhang, Y.: ‘Calculation of lightning transient responses on wind turbine towers’, Math. Probl. Eng., 2013, 2013, pp. 18.
    18. 18)
      • 18. Xiaohui, W., Zhang, X., Dasheng, Y.: ‘An efficient algorithm of transient responses on wind turbine towers struck by lightning’, Int. J. Comput. Math. Electr. Electron. Eng. COMPEL, 2009, 28, (2), pp. 372384.
    19. 19)
      • 19. Wang, X., Zhang, X.: ‘Electric field distribution inside wind turbine towers struck by lightning’. 8th Int. Symp. on Antennas, Propagation and EM Theory Proc. (ISAPE), Kunming, China, 2–5 November 2008, pp. 496499.
    20. 20)
      • 20. Zhang, X., Zhang, Y., Liu, C.: ‘A complete model of wind turbines for lightning transient analysis’, J. Renew. Sustain. Energy, 2014, 6, (1), pp. 112.
    21. 21)
      • 21. Zalhaf, A.S., Abdel-Salam, M., Ahmed, M., et al: ‘A simplified model of wind turbine for lightning transient analysis as influenced by structure of grounding system’. 5th Int. Conf. on Electric Power and Energy Conversion Systems, Kitakyushu, Japan, 23–25 April 2018, pp. 16.
    22. 22)
      • 22. Rodrigues, R.B., Mendes, V.M.F., Catalao, J.P.S.: ‘Protection of wind energy systems against the indirect effects of lightning’, Renew. Energy, 2011, 36, (11), pp. 28882896.
    23. 23)
      • 23. Amirat, Y., Benbouzid, M.E.H., Al-Ahmar, E., et al: ‘A brief status on condition monitoring and fault diagnosis in wind energy conversion systems’, Renew. Sust. Energy Rev., 2009, 13, (9), pp. 26292636.
    24. 24)
      • 24. Kong, C., Bang, J., Sugiyama, Y.: ‘Structural investigation of composite wind turbine blade considering various load cases and fatigue life’, Energy, 2005, 30, (11–12), pp. 21012114.
    25. 25)
      • 25. Kusiak, A., Li, W.: ‘The prediction and diagnosis of wind turbine faults’, Renew. Energy, 2011, 36, (1), pp. 1623.
    26. 26)
      • 26. Garolera, A.C., Holboell, J., Madsen, S.F.: ‘Lightning transient analysis in wind turbine blades’. Int. Conf. on Power Systems Transients (IPST), Vancouver, BC, Canada, 18–20 July 2013, pp. 17.
    27. 27)
      • 27. Zhang, X.: ‘Calculation of transient potential rise on the wind turbine struck by lightning’, Sci. World J., 2014, 2014, pp. 18.
    28. 28)
      • 28. Buccella, C., Feliziani, M.: ‘A hybrid model to compute the effects of a direct lightning stroke on three-dimensional structures’, IEEE Trans. Magn., 2003, 39, (3), pp. 15861589.
    29. 29)
      • 29. Al-Asadi, M.M.: ‘A simple formula for calulating the frequency dependent resistance of round wire’, Microw. Opt. Technol. Lett., 1998, 19, (2), pp. 8487.
    30. 30)
      • 30. Dengler, R.: ‘Self inductance of a wire loop as a curve integral’, Adv. Electromagn., 2013, 5, (1), pp. 114.
    31. 31)
      • 31. Capelli, F., Riba, J.R.: ‘Analysis of formulas to calculate the AC inductance of different configurations of nonmagnetic circular conductors’, Electr. Eng., 2017, 99, (3), pp. 827837.
    32. 32)
      • 32. CIGRE Working Group: ‘Guide to procedures for estimating the lightning performance of transmission lines’, 1991.
    33. 33)
      • 33. Malcolm, N., Aggarwal, R.K.: ‘Transient overvoltage study of an Island wind farm’. Proc. of the Universities Power Engineering Conf., London, UK, 4–7 September 2012, pp. 16.
    34. 34)
      • 34. Nguyen, T.Q., Pham, T., Tran, T.V.: ‘Electromagnetic transient simulation of lightning overvoltage in a wind farm’. Electrical Insulation Conf. (EIC), Ottawa, ON, Canada, 2–5 June 2013, pp. 47.
    35. 35)
      • 35. Napolitano, F., Paolone, M., Borghetti, A., et al: ‘Models of wind-turbine main-shaft bearings for the development of specific lightning protection systems’, IEEE Trans. Electromagn. Compat., 2011, 53, (1), pp. 99107.
    36. 36)
      • 36. Romero, D., Montanya, J., Candela, A.: ‘Behaviour of the wind-turbines under lightning strikes including nonlinear grounding system’. Int. Conf. in Renewable Energy and Power Quality (ICREPQ), Granada, Spain, March 2010, pp. 16.
    37. 37)
      • 37. Arnold, A.H.M.: ‘The alternating-current resistance of tubular conductors’, J. Inst. Electr. Engineers, 1936, 78, (473), pp. 580593.
    38. 38)
      • 38. Morgan, V.T., Findlay, R.D., Derrah, S.: ‘New formula to calculate the skin effect in isolated tubular conductors’, IEE Proc. Sci. Meas. Technol., 2000, 147, (4), pp. 169171.
    39. 39)
      • 39. Dommel, H.W.: ‘Digital computer solution of electromagnetic transients in single-and multiphase networks’, IEEE Trans. Power Appar. Syst., 1969, PAS-88, (4), pp. 388399.
    40. 40)
      • 40. Glover, J., Sarma, M., Overbye, T.: ‘Power system analysis and design’ (Cengage Learning, USA, 2008, 5th edn.).
    41. 41)
      • 41. IEC: ‘High voltage test techniques – part 1: general definitions and test requirement, IEC standard 60060-1’, 1989.

Related content

This is a required field
Please enter a valid email address