access icon free Fault-tolerant control of a smart PV-grid hybrid system

This study deals with a fault-tolerant control of a smart PV-grid plant. The small scale system is dedicated to a stationary alternative current load and it consists of a photovoltaic module, supported by a single-phase grid. To ensure a smart permutation between the two proposed operation modes, a fuzzy logic-based power management algorithm is designed and implemented. In case of a sub-system failure, a fault-tolerant control technique is adopted to maintain the service continuity. In this study, two scenarios are proposed. The first concerns a load current sensor failure, where a material redundancy is adopted through the use of two observers, selected via a voting algorithm. The second deals to sense the system ability to maintain the service continuity in the worst case, where a grid black-out (grid-off) is planned. In this scenario, an additional functioning mode is added to reconfigure the control strategy. To prove the effectiveness of the proposed algorithms, the obtained experimental results with a given load profile are presented and commented.

Inspec keywords: power generation control; smart power grids; continuous systems; discrete systems; photovoltaic power systems; fault tolerant control; observers; fuzzy logic

Other keywords: smart permutation; smart PV-grid plant; operation modes; grid black-out; photovoltaic module; observers; smart PV-grid hybrid system; load profile; load current sensor failure; single-phase grid; fuzzy logic-based power management algorithm; small scale system; voting algorithm; service continuity; fault-tolerant control technique; system ability; stationary alternative current load; functioning mode; sub-system failure

Subjects: Control of electric power systems; Simulation, modelling and identification; Solar power stations and photovoltaic power systems; Discrete control systems; Formal logic

References

    1. 1)
      • 4. Basaran, K., Cetin, N.S., Borekci, S.: ‘Energy management for on-grid and off-grid wind/PV and battery hybrid systems’, IET Renew. Power Gener., 2017, 11, (5), pp. 642649.
    2. 2)
      • 18. Nazari, R., Seron, M.M., Yetendje, A.: ‘Invariant-set-based fault tolerant control using virtual sensors’, IET Control Theory Applic., 2011, 5, (9), pp. 10921103.
    3. 3)
      • 2. Lan, J., Patton, R.J.: ‘Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T–S fuzzy modeling’, IEEE Trans. Fuzzy Syst., 2017, 25, pp. 11411154.
    4. 4)
      • 10. Jlassi, I., Estima, J.O., El Khil, S.K., et al: ‘A robust observer-based method for IGBT and current sensors fault diagnosis in voltage-source inverters of PMSM drives’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 28942905.
    5. 5)
      • 1. Lan, J., Patton, R.J.: ‘A new strategy for integration of fault estimation within fault-tolerant control’, Automat. J., 2016, 69, pp. 4859.
    6. 6)
      • 20. Valenciaga, F., Puleston, P.F.: ‘Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 398405.
    7. 7)
      • 16. Raisemeche, A., Boukhnifer, M., Larouci, C., et al: ‘Fault tolerant control to mechanical sensor failures for induction motor drive: A comparative study of voting algorithms’. IEEE Industrial Electronics Conf., Vienne, 2013, pp. 18.
    8. 8)
      • 8. Engin Başoğlu, M., Çakır, B.: ‘Hybrid global maximum power point tracking approach for photovoltaic power optimisers’, IET Renew. Power Gener., 2018, 12, (8), pp. 875882.
    9. 9)
      • 3. Elgammal, A.A.A., El-naggar, M.F.: ‘MOPSO-based optimal control of shunt active power filter using a variable structure fuzzy logic sliding mode controller for hybrid (FC-PV-wind-battery) energy utilisation scheme’, IET Renew. Power Gener., 2017, 11, pp. 11481156.
    10. 10)
      • 11. Gou, B., Ge, X., Wang, S., et al: ‘An open-switch fault diagnosis method for single-phase PWM rectifier using a model-based approach in high-speed railway electrical traction drive system’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 38163826.
    11. 11)
      • 14. Hasan, S.M., Husain, I.: ‘A Luenberger-sliding mode observer for online parameter estimation and adaptation in high-performance induction motor drives’, IEEE Trans. Ind. Appl., 2009, 45, (2), pp. 772781.
    12. 12)
      • 21. Valenciaga, F., Puleston, P.F., Battaiotto, P.E.: ‘Variable structure system control design method based on a differential geometric approach: application to a wind energy conversion subsystem’, IEE Proc. Control Theory Appl., 2004, 151, pp. 612.
    13. 13)
      • 19. Li, F.-D., Wu, M., He, Y., et al: ‘Optimal control in microgrid using multi-agent reinforcement learning’, ISA Trans., 2012, 51, pp. 743751.
    14. 14)
      • 17. Medjmadj, S., Diallo, D., Mostefai, M., et al: ‘PMSM drive position estimation: contribution to the high-frequency injection voltage selection issue’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 349358.
    15. 15)
      • 7. Malik, H., Mishra, S.: ‘Application of GEP to investigate the imbalance faults in direct-drive wind turbine using generator current signals’, IET Renew. Power Gener., 2018, 12, (3), pp. 279291.
    16. 16)
      • 5. Ashrafi Niaki, S.H., Hosseini, S.M., Abdoos, A.A.: ‘Fault detection of HVDC cable in multi-terminal offshore wind farms using transient sheath voltage’, IET Renew. Power Gener., 2017, 11, (13), pp. 17071713.
    17. 17)
      • 12. Xie, D., Pu, J., Ge, X.: ‘Current residual-based method for opencircuit fault diagnosis in single-phase PWM converter’, IET Power Electron., 2018, 11, pp. 22792285.
    18. 18)
      • 9. Tiar, M., Betkaa, A., Drid, S., et al: ‘Optimal energy control of a PV-fuel cell hybrid system’, Int. J. Hydrog. Energy, 2017, 42, (2), pp. 14561465.
    19. 19)
      • 6. Sowmmiya, U., Uma, G.: ‘ANFIS-based sensor fault-tolerant control for hybrid grid’, IET Renew. Power Gener., 2018, 12, (1), pp. 3141.
    20. 20)
      • 15. Benaissaa, A., Rabhib, B., Benkhorisc, M.F., et al: ‘An adaptive linear quadratic regulator for three-phase UPS system powering nonlinear loads’, Energy Proc., 2015, 74, pp. 11001111.
    21. 21)
      • 13. Bourogaoui, M., Ben Attia Sethom, H., Slama Belkhodja, I.: ‘Speed/position sensor fault tolerant control in adjustable speed drives’, ISA Trans., 2016, 64, pp. 269284.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5367
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5367
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading