Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Wave farms grid code compliance in isolated small power systems

Wave energy is one of the electric generation options based on renewable energies, especially suitable for islands due to the energy resource availability and the higher energy cost of energy in its electric grids. The oscillating nature of the wave resource is prone to produce negative impacts in these electric grids when considering scenarios of high penetration of wave energy generation. This study analyses the impact of wave energy generation on the power system frequency for the particular case study of Tenerife Island (Spain). Then, hourly data related to sea states in Tenerife, during a whole year, will be provided to generate an electric power profile, based on a model of a wave energy farm with a specific wave converter type. A previously developed dynamic simulation model of the Tenerife transmission network will be fed with these power profiles and the hourly electric generation and consumption profiles to analyse the system frequency. A complete set of analysis during the whole year will be accomplished in order to determine the number of over-frequency events according to the grid codes. Finally, some corrective measures will be proposed as conclusions, e.g. energy storage devices, as the most reliable solution to mitigate frequency deviations.

References

    1. 1)
      • 2. Falnes, J.: ‘A review of wave-energy extraction’, Mar. Struct., 2007, 20, pp. 185201.
    2. 2)
      • 1. Cruz, J. (Ed.): ‘Ocean wave energy: current status and future perspectives’ (Springer-Verlag, Berlin, Heidelberg, Germany, 2008).
    3. 3)
      • 34. Veigas, M., Iglesias, G.: ‘Wave and offshore wind potential for the island of Tenerife’, Energy Convers. Manage., 2013, 76, pp. 738745.
    4. 4)
      • 45. Inoue, T., Taniguchi, H., Ikeguchi, Y., et al: ‘Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients’, IEEE Trans. Power Syst., 1997, 12, (1), pp. 136143.
    5. 5)
      • 38. Santos, M., Garcí-Tabarés, L., Blanco, M., et al: ‘Testing of a full-scale PTO based on a switched reluctance linear generator for wave energy conversion’. 4rd Int. Conf. Ocean Energy (ICOE), Dublin, Ireland, 2012.
    6. 6)
      • 48. Lafoz, M., Pasquotto, M., Moreno-Torres, P., et al: ‘Reduction of power oscillations combining energy storage with prediction techniques’. Conf.: Proc. of the Twelfth European Wave and Tidal Energy Conf., Cork, Ireland, 2017.
    7. 7)
      • 32. Veigas, M., Ramos, V., Iglesias, G.: ‘A wave farm for an island: detailed effects on the nearshore wave climate’, Energy, 2014, 69, pp. 801812.
    8. 8)
      • 40. Yu, Z., Falnes, J.: ‘State-space modelling of a vertical cylinder in heave’, Appl. Ocean Res., 1995, 17, pp. 265275.
    9. 9)
      • 31. Harris, M.: ‘Officials sign agreement for Canary islands wave power development’. Available at http://www.hydroworld.com/articles/2014/02/officials-sign-agreement-for-canary-islands-wave-power-development.html.
    10. 10)
      • 51. ‘European Energy Storage Technology Development Roadmap’, European Energy Research Alliance (EASE/EERA). Available at https://eera-es.eu/wp-content/uploads/2016/03/EASE-EERA-Storage-Technology-Development-Roadmap-2017-HR.pdf.
    11. 11)
      • 4. ‘AquaRET, ‘Waves’, in AquaRET Text Book’, 2015. Available at http://www.aquaret.com/.
    12. 12)
      • 24. Alsayed, M., Cacciato, M., Scarcella, G.: ‘Multicriteria optimal sizing of photovoltaic-wind turbine grid connected systems’, IET Renew. Power Gener., 2013, 28, (2), pp. 370370.
    13. 13)
      • 13. Kaneshiro, R.S.: ‘Hawaii island (big island) wind impact’. Workshop on Active Power Control from Wind Power, Denver, USA, 2013.
    14. 14)
      • 18. REE: ‘Resolución de 24 de julio de 2012, BOE 10/08/12’.
    15. 15)
      • 50. Kovaltchouk, T., Multon, B., Ben Ahmed, H., et al: ‘Enhanced aging model for supercapacitors taking into account power cycling: application to the sizing of an energy storage system in a direct wave energy converter’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 24052414.
    16. 16)
      • 41. Draycott, S., Noble, D.R., Davey, T., et al: ‘Re-creation of site-specific multi-directional waves with non-collinear current’, Ocean Eng., 2017, 152, pp. 391403.
    17. 17)
      • 29. Veigas, M., Iglesias, G.: ‘A hybrid wave-wind offshore farm for an island’, Int. J. Green Energy, 2014, 12, (6), pp. 570576.
    18. 18)
      • 20. Hong, Y., Waters, R., Boström, C., et al: ‘Review on electrical control strategies for wave energy converting systems’, Renew. Sust. Energy Rev., 2014, 31, pp. 329342.
    19. 19)
      • 21. Göterman, M., Engström, J., Eriksson, M., et al: ‘Methods of reducing power fluctuations in wave energy parks’, Renew. Sustain. Energy, 2014, 6, (4), p. 043103.
    20. 20)
      • 47. Spiegel, R., Schiller, J., Srinivasan, R.A. (EDs.): ‘Análisis de la varianza’, ‘Probabilidad y Estadística Schaum's outline of theory and problems of probability and statistics’, (McGraw-Hill, Madrid, 2000, 2nd edn.), pp. 335371, ISBN 978-970-10-4231-1.
    21. 21)
      • 3. Enerdata: ‘Global energy statistical yearbook’, 2014. Available at https://yearbook.enerdata.net/world-electricity-production-map-graph-and-data.html.
    22. 22)
      • 49. Chang, X., Li, Y., Zhang, W., et al: ‘Active disturbance rejection control for a flywheel energy storage system’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 9911001.
    23. 23)
      • 27. ENTSO-E: ‘Continental Europe operation handbook’ (2004).
    24. 24)
      • 33. Veigas, M., Iglesias, G.: ‘Potentials of a hybrid offshore farm for the island of Fuerteventura’, Energy Convers. Manage., 2014, 86, pp. 300308.
    25. 25)
      • 35. ‘Prediccion de oleaje, nivel del mar; Boyas y mareografos – Puertos del Estado’. Available at http://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx, accessed 26 December 2017.
    26. 26)
      • 9. Blanco, M., Navarro, G., Lafoz, M., et al: ‘Study of the impact of wave energy generation in the frequency of an island electric grid’. Proc. of the 12th European Wave and Tidal Energy Conf. (EWTEC), Ireland, 2017.
    27. 27)
      • 11. Polinder, H., Scuotto, M., Sharma, N.D.R, et al: ‘Wave energy converters and their impact on power systems’. 2005 Int. Conf. Future Power Systems, Amsterdam, The Netherlands, 2005.
    28. 28)
      • 43. Egido, I., Fernández-Bernal, F., Rouco, L., et al: ‘Modelling of thermal generating units for automatic generation control purposes’, IEEE Trans. Control Syst. Technol., 2004, 12, (1), pp. 205210.
    29. 29)
      • 5. Drew, B., Plummer, A.R., Sahinkaya, M.N.: ‘A review of wave energy converter technology’, Proc. Int. Mech. Eng. A, J. Power Energy, 2009, 223, pp. 887902.
    30. 30)
      • 7. Falnes, J. (EDs.): ‘Ocean waves and oscillating systems: linear interactions’, ‘Wave-energy extraction’ (Cambridge University Press, Cambridge, UK, 2002, 1st edn.), pp. 118195.
    31. 31)
      • 19. Lafoz, M., Blanco, M., Ramirez, D.: ‘Grid connection for wave power farms’. Proc. of the 2011-14th European Conf. on Power Electronics and Applications (EPE 2011), Birmingham, UK, 2011, pp. 110.
    32. 32)
      • 46. Wall, P., González-Longatt, F., Terzija, V.: ‘Demonstration of an inertia constant estimation through simulation’. Proc. 2010 Universities Power Engineering Conference, Cardiff, UK, 2010.
    33. 33)
      • 10. Blavette, A., O'Sullivan, D.L., Alcom, R., et al: ‘Impact of a medium-size wave farm on grids of different strength levels’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 917923.
    34. 34)
      • 14. Iswadi, H.R, Best, R.J., Morrow, J.: ‘Irish power system primary frequency response metrics during different system non synchronous penetration’. Proc. IEEE PowerTech, Eindhoven, The Netherlands, 2015.
    35. 35)
      • 44. UCTE, (Union for the Co-ordination of Transmission of Electricity). Operation handbook. (Union for the Co-ordination of Transmission of Electricity). P1 Policy 1: Load-frequency control and performance. Version 3.0, Level C, dated 12.03.2009.
    36. 36)
      • 37. REE: ‘Instalaciones conectadas a la red de transporte y equipo generador: requisitos mínimos de diseÃśo, equipamiento, funcionamiento, puesta en servicio y seguridad’, 2015.
    37. 37)
      • 16. Edrah, M., Anaya-Lara, O., Kockar, I., et al: ‘Impact of domestic frequency responsive demand on the Shetland Islands network frequency stability’. IET Renewable Power Generation, 24th Int. Conf. & Exhibition on Electricity Distribution (CIRED), Glasgow, UK, 2017, vol. 2017, pp. 18001803.
    38. 38)
      • 25. Zhou, Z., Benbouzid, M., Fréderic Charpentier, J., et al: ‘A review of energy storage technologies for marine current energy systems’, Renew. Sustain. Energy Rev., 2013, 18, pp. 390400.
    39. 39)
      • 28. REE: ‘Red eléctrica España’. Available at http://www.ree.es/es.
    40. 40)
      • 8. Cruz, J., Sykes, R., Siddom, P., et al: ‘Estimating the loads and energy yield of arrays of wave energy converters under realistic seas’, IET Renew. Power Gener., 2010, 4, (6), pp. 488497.
    41. 41)
      • 23. Singh, R., Bansal, R.C.: ‘Review of HRESs based on storage options, system architecture and optimisation criteria and methodologies’, IET Renew. Power Gener., 2018, 12, (7), pp. 747760.
    42. 42)
      • 36. Willmott, C., Matsuura, K.: ‘Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance’, Clim. Res., 2005, 30, pp. 7982.
    43. 43)
      • 22. Moreno-Torres, P., Blanco, M., Navarro, G., et al: ‘Power smoothing system for wave energy converters by means of a supercapacitor-based energy storage system’. 17th European Conf. on Power Electronics and Applications (EPE'15-ECCE Europe), Geneva, 2015.
    44. 44)
      • 17. Gill, S., Dolan, M., Emhemed, A., et al: ‘Increasing renewable penetration on islanded networks through active network management: a case study from Shetland’, IET Renew. Power Gener., 2015, 9, (5), pp. 453465.
    45. 45)
      • 6. Seymour, J.: ‘The seven types of power problems – white paper 18’, 2010.
    46. 46)
      • 30. European Comission (EC): ‘System operation guideline (provisional final draft)’.
    47. 47)
      • 12. Sharma, S., Huang, S.H., Sharma, N.D.R, et al: ‘System inertial frequency response estimation and impact of renewable sources in ERCOT interconnection’. Proc. 2011 IEEE Power and Energy Society General Meeting, Michigan, USA, 2011.
    48. 48)
      • 15. Wang, Y., Silva, V., López-Botet-Zulueta, M.: ‘Impact of high penetration of variable renewable generation on frequency dynamics in the continental Europe interconnected system’, IET Renew. Power Gener., 2016, 10, (1), pp. 1016.
    49. 49)
      • 26. ‘System Operation Guideline (provisional final draft’, European Commission (EC), 2016.
    50. 50)
      • 42. Babarit, A.: ‘A review of the park effect in arrays of wave energy converters’. Int. Conf. on Ocean Energy (ICOE), Ireland, 2012.
    51. 51)
      • 39. Hals, J., Falnes, J., Moan, T.: ‘A comparison of selected strategies for adaptive control of wave energy converters’, J. Offshore Mech. Arct. Eng., 2011, 133, p. 31101.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5351
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5351
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address