Wave farms grid code compliance in isolated small power systems

Wave farms grid code compliance in isolated small power systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Wave energy is one of the electric generation options based on renewable energies, especially suitable for islands due to the energy resource availability and the higher energy cost of energy in its electric grids. The oscillating nature of the wave resource is prone to produce negative impacts in these electric grids when considering scenarios of high penetration of wave energy generation. This study analyses the impact of wave energy generation on the power system frequency for the particular case study of Tenerife Island (Spain). Then, hourly data related to sea states in Tenerife, during a whole year, will be provided to generate an electric power profile, based on a model of a wave energy farm with a specific wave converter type. A previously developed dynamic simulation model of the Tenerife transmission network will be fed with these power profiles and the hourly electric generation and consumption profiles to analyse the system frequency. A complete set of analysis during the whole year will be accomplished in order to determine the number of over-frequency events according to the grid codes. Finally, some corrective measures will be proposed as conclusions, e.g. energy storage devices, as the most reliable solution to mitigate frequency deviations.


    1. 1)
      • 1. Cruz, J. (Ed.): ‘Ocean wave energy: current status and future perspectives’ (Springer-Verlag, Berlin, Heidelberg, Germany, 2008).
    2. 2)
      • 2. Falnes, J.: ‘A review of wave-energy extraction’, Mar. Struct., 2007, 20, pp. 185201.
    3. 3)
      • 3. Enerdata: ‘Global energy statistical yearbook’, 2014. Available at
    4. 4)
      • 4. ‘AquaRET, ‘Waves’, in AquaRET Text Book’, 2015. Available at
    5. 5)
      • 5. Drew, B., Plummer, A.R., Sahinkaya, M.N.: ‘A review of wave energy converter technology’, Proc. Int. Mech. Eng. A, J. Power Energy, 2009, 223, pp. 887902.
    6. 6)
      • 6. Seymour, J.: ‘The seven types of power problems – white paper 18’, 2010.
    7. 7)
      • 7. Falnes, J. (EDs.): ‘Ocean waves and oscillating systems: linear interactions’, ‘Wave-energy extraction’ (Cambridge University Press, Cambridge, UK, 2002, 1st edn.), pp. 118195.
    8. 8)
      • 8. Cruz, J., Sykes, R., Siddom, P., et al: ‘Estimating the loads and energy yield of arrays of wave energy converters under realistic seas’, IET Renew. Power Gener., 2010, 4, (6), pp. 488497.
    9. 9)
      • 9. Blanco, M., Navarro, G., Lafoz, M., et al: ‘Study of the impact of wave energy generation in the frequency of an island electric grid’. Proc. of the 12th European Wave and Tidal Energy Conf. (EWTEC), Ireland, 2017.
    10. 10)
      • 10. Blavette, A., O'Sullivan, D.L., Alcom, R., et al: ‘Impact of a medium-size wave farm on grids of different strength levels’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 917923.
    11. 11)
      • 11. Polinder, H., Scuotto, M., Sharma, N.D.R, et al: ‘Wave energy converters and their impact on power systems’. 2005 Int. Conf. Future Power Systems, Amsterdam, The Netherlands, 2005.
    12. 12)
      • 12. Sharma, S., Huang, S.H., Sharma, N.D.R, et al: ‘System inertial frequency response estimation and impact of renewable sources in ERCOT interconnection’. Proc. 2011 IEEE Power and Energy Society General Meeting, Michigan, USA, 2011.
    13. 13)
      • 13. Kaneshiro, R.S.: ‘Hawaii island (big island) wind impact’. Workshop on Active Power Control from Wind Power, Denver, USA, 2013.
    14. 14)
      • 14. Iswadi, H.R, Best, R.J., Morrow, J.: ‘Irish power system primary frequency response metrics during different system non synchronous penetration’. Proc. IEEE PowerTech, Eindhoven, The Netherlands, 2015.
    15. 15)
      • 15. Wang, Y., Silva, V., López-Botet-Zulueta, M.: ‘Impact of high penetration of variable renewable generation on frequency dynamics in the continental Europe interconnected system’, IET Renew. Power Gener., 2016, 10, (1), pp. 1016.
    16. 16)
      • 16. Edrah, M., Anaya-Lara, O., Kockar, I., et al: ‘Impact of domestic frequency responsive demand on the Shetland Islands network frequency stability’. IET Renewable Power Generation, 24th Int. Conf. & Exhibition on Electricity Distribution (CIRED), Glasgow, UK, 2017, vol. 2017, pp. 18001803.
    17. 17)
      • 17. Gill, S., Dolan, M., Emhemed, A., et al: ‘Increasing renewable penetration on islanded networks through active network management: a case study from Shetland’, IET Renew. Power Gener., 2015, 9, (5), pp. 453465.
    18. 18)
      • 18. REE: ‘Resolución de 24 de julio de 2012, BOE 10/08/12’.
    19. 19)
      • 19. Lafoz, M., Blanco, M., Ramirez, D.: ‘Grid connection for wave power farms’. Proc. of the 2011-14th European Conf. on Power Electronics and Applications (EPE 2011), Birmingham, UK, 2011, pp. 110.
    20. 20)
      • 20. Hong, Y., Waters, R., Boström, C., et al: ‘Review on electrical control strategies for wave energy converting systems’, Renew. Sust. Energy Rev., 2014, 31, pp. 329342.
    21. 21)
      • 21. Göterman, M., Engström, J., Eriksson, M., et al: ‘Methods of reducing power fluctuations in wave energy parks’, Renew. Sustain. Energy, 2014, 6, (4), p. 043103.
    22. 22)
      • 22. Moreno-Torres, P., Blanco, M., Navarro, G., et al: ‘Power smoothing system for wave energy converters by means of a supercapacitor-based energy storage system’. 17th European Conf. on Power Electronics and Applications (EPE'15-ECCE Europe), Geneva, 2015.
    23. 23)
      • 23. Singh, R., Bansal, R.C.: ‘Review of HRESs based on storage options, system architecture and optimisation criteria and methodologies’, IET Renew. Power Gener., 2018, 12, (7), pp. 747760.
    24. 24)
      • 24. Alsayed, M., Cacciato, M., Scarcella, G.: ‘Multicriteria optimal sizing of photovoltaic-wind turbine grid connected systems’, IET Renew. Power Gener., 2013, 28, (2), pp. 370370.
    25. 25)
      • 25. Zhou, Z., Benbouzid, M., Fréderic Charpentier, J., et al: ‘A review of energy storage technologies for marine current energy systems’, Renew. Sustain. Energy Rev., 2013, 18, pp. 390400.
    26. 26)
      • 26. ‘System Operation Guideline (provisional final draft’, European Commission (EC), 2016.
    27. 27)
      • 27. ENTSO-E: ‘Continental Europe operation handbook’ (2004).
    28. 28)
      • 28. REE: ‘Red eléctrica España’. Available at
    29. 29)
      • 29. Veigas, M., Iglesias, G.: ‘A hybrid wave-wind offshore farm for an island’, Int. J. Green Energy, 2014, 12, (6), pp. 570576.
    30. 30)
      • 30. European Comission (EC): ‘System operation guideline (provisional final draft)’.
    31. 31)
      • 31. Harris, M.: ‘Officials sign agreement for Canary islands wave power development’. Available at
    32. 32)
      • 32. Veigas, M., Ramos, V., Iglesias, G.: ‘A wave farm for an island: detailed effects on the nearshore wave climate’, Energy, 2014, 69, pp. 801812.
    33. 33)
      • 33. Veigas, M., Iglesias, G.: ‘Potentials of a hybrid offshore farm for the island of Fuerteventura’, Energy Convers. Manage., 2014, 86, pp. 300308.
    34. 34)
      • 34. Veigas, M., Iglesias, G.: ‘Wave and offshore wind potential for the island of Tenerife’, Energy Convers. Manage., 2013, 76, pp. 738745.
    35. 35)
      • 35. ‘Prediccion de oleaje, nivel del mar; Boyas y mareografos – Puertos del Estado’. Available at, accessed 26 December 2017.
    36. 36)
      • 36. Willmott, C., Matsuura, K.: ‘Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance’, Clim. Res., 2005, 30, pp. 7982.
    37. 37)
      • 37. REE: ‘Instalaciones conectadas a la red de transporte y equipo generador: requisitos mínimos de diseÃśo, equipamiento, funcionamiento, puesta en servicio y seguridad’, 2015.
    38. 38)
      • 38. Santos, M., Garcí-Tabarés, L., Blanco, M., et al: ‘Testing of a full-scale PTO based on a switched reluctance linear generator for wave energy conversion’. 4rd Int. Conf. Ocean Energy (ICOE), Dublin, Ireland, 2012.
    39. 39)
      • 39. Hals, J., Falnes, J., Moan, T.: ‘A comparison of selected strategies for adaptive control of wave energy converters’, J. Offshore Mech. Arct. Eng., 2011, 133, p. 31101.
    40. 40)
      • 40. Yu, Z., Falnes, J.: ‘State-space modelling of a vertical cylinder in heave’, Appl. Ocean Res., 1995, 17, pp. 265275.
    41. 41)
      • 41. Draycott, S., Noble, D.R., Davey, T., et al: ‘Re-creation of site-specific multi-directional waves with non-collinear current’, Ocean Eng., 2017, 152, pp. 391403.
    42. 42)
      • 42. Babarit, A.: ‘A review of the park effect in arrays of wave energy converters’. Int. Conf. on Ocean Energy (ICOE), Ireland, 2012.
    43. 43)
      • 43. Egido, I., Fernández-Bernal, F., Rouco, L., et al: ‘Modelling of thermal generating units for automatic generation control purposes’, IEEE Trans. Control Syst. Technol., 2004, 12, (1), pp. 205210.
    44. 44)
      • 44. UCTE, (Union for the Co-ordination of Transmission of Electricity). Operation handbook. (Union for the Co-ordination of Transmission of Electricity). P1 Policy 1: Load-frequency control and performance. Version 3.0, Level C, dated 12.03.2009.
    45. 45)
      • 45. Inoue, T., Taniguchi, H., Ikeguchi, Y., et al: ‘Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients’, IEEE Trans. Power Syst., 1997, 12, (1), pp. 136143.
    46. 46)
      • 46. Wall, P., González-Longatt, F., Terzija, V.: ‘Demonstration of an inertia constant estimation through simulation’. Proc. 2010 Universities Power Engineering Conference, Cardiff, UK, 2010.
    47. 47)
      • 47. Spiegel, R., Schiller, J., Srinivasan, R.A. (EDs.): ‘Análisis de la varianza’, ‘Probabilidad y Estadística Schaum's outline of theory and problems of probability and statistics’, (McGraw-Hill, Madrid, 2000, 2nd edn.), pp. 335371, ISBN 978-970-10-4231-1.
    48. 48)
      • 48. Lafoz, M., Pasquotto, M., Moreno-Torres, P., et al: ‘Reduction of power oscillations combining energy storage with prediction techniques’. Conf.: Proc. of the Twelfth European Wave and Tidal Energy Conf., Cork, Ireland, 2017.
    49. 49)
      • 49. Chang, X., Li, Y., Zhang, W., et al: ‘Active disturbance rejection control for a flywheel energy storage system’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 9911001.
    50. 50)
      • 50. Kovaltchouk, T., Multon, B., Ben Ahmed, H., et al: ‘Enhanced aging model for supercapacitors taking into account power cycling: application to the sizing of an energy storage system in a direct wave energy converter’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 24052414.
    51. 51)
      • 51. ‘European Energy Storage Technology Development Roadmap’, European Energy Research Alliance (EASE/EERA). Available at

Related content

This is a required field
Please enter a valid email address