http://iet.metastore.ingenta.com
1887

Grade point average assessment for metaheuristic GMPP techniques of partial shaded PV systems

Grade point average assessment for metaheuristic GMPP techniques of partial shaded PV systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Photovoltaic (PV) maximum power point tracker (MPPT) is compulsory in PV systems to improve its output power and efficiency. Conventional techniques can track the maximum power under uniform irradiances efficiently and accurately. Nevertheless, in case of partial shading conditions where multiple peaks are generated, these conventional techniques may stick at any local peak of the PV curve of the PV energy systems. Metaheuristic techniques have been applied to PV energy systems to overcome this limitation, where most of these techniques can catch the global MPP (GMPP) easily and efficiently. In case of dynamic change of partial shading, most of these techniques need reinitialisation to disperse the search agents to look again for a new position and value of GMPP. This study introduces a brief description, assessment and evaluation for these techniques. In addition, it proposes a novel assessment criterion based on grade point average for evaluating and ranking the 20 famous metaheuristic and hybrid GMPP techniques. This evaluation methodology can help researchers, designer and decision maker to choose the best option for MPPT of dynamic change of partially shading PV energy systems.

References

    1. 1)
      • 1. Onat, N.: ‘Recent developments in maximum power point tracking technologies for photovoltaic systems’, Int. J. Photoenergy, 2010, http://dx.doi.org/10.1155/2010/245316.
    2. 2)
      • 2. Fox, D., Shuey, K., Stechschulte, D.: ‘Peak power tracking technique for photovoltaic arrays’. IEEE Power Electronics Specialists Conf., San Diego, CA, USA, 1979.
    3. 3)
      • 3. Ansari, M.F., Chatterji, S., Iqbal, A.: ‘A fuzzy logic control scheme for a solar photovoltaic system for a maximum power point tracker’, Int. J. Sustain. Energy, 2010, 29, (4), pp. 245255.
    4. 4)
      • 4. Eltamaly, A.M., Alolah, A., Abdulghany, M.: ‘Digital implementation of general purpose fuzzy logic controller for photovoltaic maximum power point tracker’. 2010 Int. Symp. Power Electronics Electrical Drives Automation and Motion (SPEEDAM), Pisa, Italy, 2010.
    5. 5)
      • 5. Eltamaly, A.M.: ‘Modeling of fuzzy logic controller for photovoltaic maximum power point tracker’. Solar Future 2010 Conf., Istanbul, Turkey, 2010.
    6. 6)
      • 6. Farh, H.M., Othman, M.F., Eltamaly, A.M.: ‘Maximum power extraction from grid-connected PV system’. 2017 Saudi Arabia Smart Grid (SASG), Jeddah, Saudi Arabia, 2017.
    7. 7)
      • 7. Eltamaly, A.M., Farh, H.M.: ‘Maximum power extraction from wind energy system based on fuzzy logic control’, Electr. Power Syst. Res., 2013, 97, pp. 144150.
    8. 8)
      • 8. Eltamaly, A.M., Farh, H.M.: ‘Smart maximum power extraction for wind energy systems’. 2015 IEEE Int. Conf. Smart Energy Grid Engineering (SEGE), Oshawa, Canada, 2015.
    9. 9)
      • 9. Bouselham, L., Hajji, M., Hajji, B., et al: ‘A New MPPT-based ANN for photovoltaic system under partial shading conditions’, Energy Proc., 2017, 111, pp. 924933.
    10. 10)
      • 10. Rizzo, S.A., Scelba, G.: ‘ANN based MPPT method for rapidly variable shading conditions’, Appl. Energy, 2015, 145, pp. 124132.
    11. 11)
      • 11. Rai, A.K., Kaushika, N.D., Singh, B., et al: ‘Simulation model of ANN based maximum power point tracking controller for solar PV system’, Sol. Energy Mater. Sol. Cells, 2011, 95, (2), pp. 773778.
    12. 12)
      • 12. Belhachat, F., Larbes, C.: ‘Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions’, Renew. Sustain. Energy Rev., 2017, 77, pp. 875889.
    13. 13)
      • 13. Aldair, A.A., Obed, A.A., Halihal, A.F.: ‘Design and implementation of ANFIS-reference model controller based MPPT using FPGA for photovoltaic system’, Renew. Sustain. Energy Rev., 2017, 82, pp. 22022217.
    14. 14)
      • 14. Kharb, R.K., Shimi, S.L., Chatterji, S., et al: ‘Modeling of solar PV module and maximum power point tracking using ANFIS’, Renew. Sustain. Energy Rev., 2014, 33, pp. 602612.
    15. 15)
      • 15. Radianto, D., Asfani, D.A., Hiyama, T.: ‘Partial shading detection and MPPT controller for total cross tied photovoltaic using ANFIS’, ACEEE Int. J. Electr. Power Eng., 2012, 3, (2), pp. 15.
    16. 16)
      • 16. Ramli, M.A., Ishaque, K., Jawaid, F., et al: ‘A modified differential evolution based maximum power point tracker for photovoltaic system under partial shading condition’, Energy Build., 2015, 103, pp. 175184.
    17. 17)
      • 17. Tajuddin, M.F.N., Ayob, S.M., Salam, Z., et al: ‘Evolutionary based maximum power point tracking technique using differential evolution algorithm’, Energy Build., 2013, 67, pp. 245252.
    18. 18)
      • 18. Kermadi, M., Berkouk, E.M.: ‘Artificial intelligence-based maximum power point tracking controllers for photovoltaic systems: comparative study’, Renew. Sustain. Energy Rev., 2017, 69, pp. 369386.
    19. 19)
      • 19. Shaiek, Y., Smida, M.B., Sakly, A., et al: ‘Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators’, Sol. Energy, 2013, 90, pp. 107122.
    20. 20)
      • 20. Ramaprabha, R., Mathur, B.: ‘Genetic algorithm based maximum power point tracking for partially shaded solar photovoltaic array’, Int. J. Res. Rev. Inf. Sci., 2012, 2, (1), p. 2.
    21. 21)
      • 21. Ram, J.P., Babu, T.S., Rajasekar, N.: ‘A comprehensive review on solar PV maximum power point tracking techniques’, Renew. Sustain. Energy Rev., 2017, 67, pp. 826847.
    22. 22)
      • 22. Ram, J.P., Rajasekar, N.: ‘A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC)’, Energy, 2017, 118, pp. 512525.
    23. 23)
      • 23. Farh, H.M., Eltamaly, A.M., Othman, M.F.: ‘Hybrid PSO–FLC for dynamic global peak extraction of the partially shaded photovoltaic system’, PLoS One, 2018, 13, (11), p. e0206171.
    24. 24)
      • 24. Ishaque, K., Salam, Z., Amjad, M., et al: ‘An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36273638.
    25. 25)
      • 25. Farh, H., Othman, M., Eltamaly, A., et al: ‘Maximum power extraction from a partially shaded PV system using an interleaved boost converter’, Energies, 2018, 11, (10), p. 2543.
    26. 26)
      • 26. Ishaque, K., Salam, Z., Taheri, H., et al: ‘Maximum power point tracking for PV system under partial shading condition via particle swarm optimization’. IEEE 2011 Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, 2011.
    27. 27)
      • 27. Liu, Y., Xia, D., He, Z.: ‘MPPT of a PV system based on the particle swarm optimization’. 2011 Fourth Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Weihai, Shandong, China, 2011.
    28. 28)
      • 28. Miyatake, M., Inada, T., Hiratsuka, I., et al: ‘Control characteristics of a Fibonacci-search-based maximum power point tracker when a photovoltaic array is partially shaded’. The Fourth Int. Power Electronics and Motion Control Conf. IPEMC, Xi'an, China, 2004.
    29. 29)
      • 29. Miyatake, M., Toriumi, F., Endo, T., et al: ‘A novel maximum power point tracker controlling several converters connected to photovoltaic arrays with particle swarm optimization technique’. European Conf. Power Electronics and Applications, Aalborg, Denmark, 2007.
    30. 30)
      • 30. Sarvi, M., Ahmadi, S., Abdi, S.: ‘A PSO-based maximum power point tracking for photovoltaic systems under environmental and partially shaded conditions’, Prog. Photovolt., Res. Appl., 2015, 23, (2), pp. 201214.
    31. 31)
      • 31. Ishaque, K., Salam, Z.: ‘A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition’, Renew. Sustain. Energy Rev., 2013, 19, pp. 475488.
    32. 32)
      • 32. Ishaque, K., Salam, Z.: ‘A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 31953206.
    33. 33)
      • 33. Eltamaly, A.M., Farh, H.M.: ‘Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO–FLC’, Sol. Energy, 2019, 177, pp. 306316.
    34. 34)
      • 34. Shi, J., Zhang, W., Zhang, Y., et al: ‘MPPT for PV systems based on a dormant PSO algorithm’, Electr. Power Syst. Res., 2015, 123, pp. 100107.
    35. 35)
      • 35. Lian, K., Jhang, J., Tian, I.: ‘A maximum power point tracking method based on perturb-and-observe combined with particle swarm optimization’, IEEE J. Photovolt., 2014, 4, (2), pp. 626633.
    36. 36)
      • 36. Teshome, D., Lee, C.H., Lin, Y.W., et al: ‘A modified firefly algorithm for photovoltaic maximum power point tracking control under partial shading’, IEEE J. Emerging Sel. Top. Power Electron., 2017, 5, (2), pp. 661671.
    37. 37)
      • 37. Shi, J.-Y., Ling, L.T., Xue, F., et al: ‘Combining incremental conductance and firefly algorithm for tracking the global MPP of PV arrays’, J. Renew. Sustain. Energy, 2017, 9, (2), p. 023501.
    38. 38)
      • 38. Mohanty, S., Subudhi, B., Ray, P.K.: ‘A grey wolf-assisted perturb & observe MPPT algorithm for a PV system’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 340347.
    39. 39)
      • 39. Sundareswaran, K., Palani, S.: ‘Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions’, Renew. Energy, 2015, 75, pp. 308317.
    40. 40)
      • 40. Guan, T., Zhuo, F.: ‘An improved SA–PSO global maximum power point tracking method of photovoltaic system under partial shading conditions’. 2017 IEEE Int. Conf. Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 2017.
    41. 41)
      • 41. Lian, K., Andrean, V.: ‘A new MPPT method for partially shaded PV system by combining modified INC and simulated annealing algorithm’. 2017 Int. Conf. High Voltage Engineering and Power Systems (ICHVEPS), Sanur, Indonesia, 2017.
    42. 42)
      • 42. Lyden, S., Haque, M.: ‘A hybrid simulated annealing and perturb and observe method for maximum power point tracking in PV systems under partial shading conditions’. 2015 Australasian Universities Power Engineering Conf. (AUPEC), Wollongong, Australia, 2015.
    43. 43)
      • 43. Pilakkat, D., Kanthalakshmi, S.: ‘An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions’, Sol. Energy, 2019, 178, pp. 3747.
    44. 44)
      • 44. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. ICNN'95 – Int. Conf. Neural Networks, Perth, Australia, 1995.
    45. 45)
      • 45. Titri, S., Larbes, C., Toumi, K.Y., et al: ‘A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions’, Appl. Soft Comput., 2017, 58, pp. 465479.
    46. 46)
      • 46. Al-Obeidat, F., Belacel, N., Carretero, J.A., et al: ‘Automatic parameter settings for the PROAFTN classifier using hybrid particle swarm optimization’. Canadian Conf. AI, Springer, Ottawa, Canada, 2010.
    47. 47)
      • 47. Ram, J.P., Rajasekar, N.: ‘A new robust, mutated and fast tracking LPSO method for solar PV maximum power point tracking under partial shaded conditions’, Appl. Energy, 2017, 201, pp. 4559.
    48. 48)
      • 48. Soltani, I., Sarvi, M., Marefatjou, H.: ‘An intelligent, fast and robust maximum power point tracking for proton exchange membrane fuel cell’, World Appl. Program., 2013, 3, (7), pp. 264281.
    49. 49)
      • 49. Chao, K.-H., Lin, Y.-S., Lai, U.-D.: ‘Improved particle swarm optimization for maximum power point tracking in photovoltaic module arrays’, Appl. Energy, 2015, 158, pp. 609618.
    50. 50)
      • 50. Babu, T.S., Rajasekar, N., Sangeetha, K.: ‘Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition’, Appl. Soft Comput., 2015, 34, pp. 613624.
    51. 51)
      • 51. Ishaque, K., Salam, Z., Shamsudin, A., et al: ‘A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm’, Appl. Energy, 2012, 99, pp. 414422.
    52. 52)
      • 52. Chang, L.Y., Chung, Y.N., Chao, K.H., et al: ‘Smart global maximum power point tracking controller of photovoltaic module arrays’, Energies, 2018, 11, (3), p. 567.
    53. 53)
      • 53. Eltamaly, A.M.: ‘Performance of smart maximum power point tracker under partial shading conditions of photovoltaic systems’, J. Renew. Sustain. Energy, 2015, 7, (4), p. 043141.
    54. 54)
      • 54. Jiang, L.L., Maskell, D.L., Patra, J.C.: ‘A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions’, Energy Build., 2013, 58, pp. 227236.
    55. 55)
      • 55. Liu, Y.-H., Huang, S.C., Huang, J.W., et al: ‘A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 10271035.
    56. 56)
      • 56. Sundareswaran, K., Sankar, P., Nayak, P.S.R., et al: ‘Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony’, IEEE Trans. Sustain. Energy, 2015, 6, (1), pp. 198209.
    57. 57)
      • 57. Mirjalili, S., Mirjalili, S.M., Lewis, A.: ‘Grey Wolf optimizer’, Adv. Eng. Softw., 2014, 69, pp. 4661.
    58. 58)
      • 58. Cherukuri, S.K., Rayapudi, S.R.: ‘Enhanced Grey Wolf optimizer based MPPT algorithm of PV system under partial shaded condition’, Int. J. Renew. Energy Dev., 2017, 6, (3), p. 203.
    59. 59)
      • 59. Mohanty, S., Subudhi, B., Ray, P.K.: ‘A Grey Wolf optimization based MPPT for PV system under changing insolation level’. 2016 IEEE Students Technology Symp. (TechSym), Kharagpur, India, 2016.
    60. 60)
      • 60. Murdianto, F.D., Efendi, M.Z., Setiawan, R.E., et al: ‘Comparison method of MPSO, FPA, and GWO algorithm in MPPT SEPIC converter under dynamic partial shading condition’. 2017 Int. Conf. Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA), Surabaya, Indonesia, 2017.
    61. 61)
      • 61. Mohanty, S., Subudhi, B., Ray, P.K.: ‘A new MPPT design using Grey Wolf optimization technique for photovoltaic system under partial shading conditions’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 181188.
    62. 62)
      • 62. Abdelaziz, A., Ali, E., Elazim, S.A.: ‘Optimal sizing and locations of capacitors in radial distribution systems via flower pollination optimization algorithm and power loss index’, Eng. Sci. Technol., 2016, 19, (1), pp. 610618.
    63. 63)
      • 63. Yang, X.-S.: ‘Flower pollination algorithm for global optimization’. Int. Conf. Unconventional Computing and Natural Computation, Springer, Orléan, France, 2012.
    64. 64)
      • 64. Dorigo, M.: ‘Optimization, learning and natural algorithms’. PhD thesis, Politecnico di Milano, 1992.
    65. 65)
      • 65. Soufyane Benyoucef, A., Chouder, A., Kara, K., et al: ‘Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions’, Appl. Soft Comput., 2015, 32, pp. 3848.
    66. 66)
      • 66. Sawant, P.T., Lbhattar, P.C., Bhattar, C.: ‘Enhancement of PV system based on artificial bee colony algorithm under dynamic conditions’. IEEE Int. Conf. Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 2016.
    67. 67)
      • 67. Fathy, A.: ‘Reliable and efficient approach for mitigating the shading effect on photovoltaic module based on modified artificial Bee colony algorithm’, Renew. Energy, 2015, 81, pp. 7888.
    68. 68)
      • 68. Yang, X.-S.: ‘Nature-inspired metaheuristic algorithms’ (Luniver Press, UK, 2010).
    69. 69)
      • 69. Yang, X.-S.: ‘Firefly algorithms for multimodal optimization’. Int. Symp. Stochastic Algorithms, Springer, Sapporo, Japan, 2009.
    70. 70)
      • 70. Sundareswaran, K., Peddapati, S., Palani, S.: ‘MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies’, IEEE Trans. Energy Convers., 2014, 29, (2), pp. 463472.
    71. 71)
      • 71. Rao, R.V., Savsani, V.J., Vakharia, D.: ‘Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems’, Comput. Aided Des., 2011, 43, (3), pp. 303315.
    72. 72)
      • 72. Chao, K.-H., Wu, M.-C.: ‘Global maximum power point tracking (MPPT) of a photovoltaic module array constructed through improved teaching-learning-based optimization’, Energies, 2016, 9, (12), p. 986.
    73. 73)
      • 73. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: ‘Optimization by simulated annealing’, Science, 1983, 220, (4598), pp. 671680.
    74. 74)
      • 74. Lyden, S., Haque, M.E.: ‘A simulated annealing global maximum power point tracking approach for PV modules under partial shading conditions’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 41714181.
    75. 75)
      • 75. Azam, M.A., Abdullah-Al-Nahid, S., Kabir, M.A., et al: ‘Microcontroller based maximum power tracking of PV using stimulated annealing algorithm’. 2012 Int. Conf. Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5336
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5336
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address