Economic dispatch coordinated with information granule chance constraint goal programming under the manifold uncertainties

Economic dispatch coordinated with information granule chance constraint goal programming under the manifold uncertainties

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

With the increasing integration of wind power and demand response into power system, the complex uncertainties from supply-side and demand-side have brought great challenges to daily operation of the power system. It is essential for enabling a comprehensive and adequate consideration of the manifold uncertainties in the grid. In this study, information granule chance constraint goal programming (IGCCGP) is proposed by a combination of chance constraint goal programming and information granule to provide a uniform representation of the multifaceted uncertainties. Leveraging on IGCCGP, the reserve constraints and branch flow constraints for accommodating the complex uncertainties in the grid are developed and the economic dispatch model considering the combined uncertainties from both supply-side and demand-side is established. To accelerate model solutions without losing much of model accuracy, the deviation in the IGCCGP is transformed to a deterministic equivalent and the optimal schedule is obtained by a mixed linear integer programming. Finally, a computational study is illustrated in the IEEE 39-bus system to verify the efficiency of the proposed method.


    1. 1)
      • 1. Chen, H., Zhang, R., Li, G., et al: ‘Economic dispatch of wind integrated power systems with energy storage considering composite operating costs’, IET Gener. Transm. Distrib., 2016, 10, (5), pp. 12941303.
    2. 2)
      • 2. Long, H., Zhang, Z., Sun, M., et al: ‘The data-driven schedule of wind farm power generations and required reserves’, Energy, 2018, 149, pp. 485495.
    3. 3)
      • 3. Ahlstrom, M., Bartlett, D., Collier, C., et al: ‘Knowledge is power: efficiently integrating wind energy and wind forecasts’, IEEE Power Energy Mag.., 2013, 11, (6), pp. 4552.
    4. 4)
      • 4. Morales-España, G., Baldick, R., García-González, J., et al: ‘Power-capacity and ramp-capability reserves for wind integration in power-based UC’, IEEE Trans. Sustain. Energy., 2016, 7, (2), pp. 614624.
    5. 5)
      • 5. Tuohy, A., Meibom, P., Denny, E., et al: ‘Unit commitment for systems with significant wind penetration’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 592601.
    6. 6)
      • 6. Wu, H., Krad, I., Florita, A., et al: ‘Stochastic multi-timescale power system operations with variable wind generation’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 33253337.
    7. 7)
      • 7. Ye, H., Li, Z.: ‘Robust security-constrained unit commitment and dispatch with recourse cost requirement’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 35273536.
    8. 8)
      • 8. Peng, C., Xie, P., Pan, L., et al: ‘Flexible robust optimization dispatch for hybrid wind/photovoltaic/hydro/thermal power system’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 751762.
    9. 9)
      • 9. Zheng, Q.P., Wang, J., Liu, A.L.: ‘Stochastic optimization for unit commitment – a review’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 19131924.
    10. 10)
      • 10. Pozo, D., Contreras, J.: ‘A chance-constrained unit commitment with an n-K security criterion and significant wind generation’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 28422851.
    11. 11)
      • 11. Wang, Q., Guan, Y., Wang, J.: ‘A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 206215.
    12. 12)
      • 12. Wang, Y., Zhao, S., Zhou, Z., et al: ‘Risk adjustable day ahead unit commitment with wind power based on chance constrained goal programming’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 530541.
    13. 13)
      • 13. Xiong, P., Jirutitijaroen, P.: ‘A stochastic optimization formulation of unit commitment with reliability constraints’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 22002208.
    14. 14)
      • 14. Matos, M.A., Bessa, R.J.: ‘Setting the operating reserve using probabilistic wind power forecasts’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 594603.
    15. 15)
      • 15. Asensio, M., Contreras, J.: ‘Stochastic unit commitment in isolated systems with renewable penetration under CVaR assessment’, IEEE Trans. Smart Grid, 2015, 7, (3), pp. 13561367.
    16. 16)
      • 16. Wang, B., Liu, X., Zhu, F., et al: ‘Unit commitment model considering flexible scheduling of demand response for high wind integration’, Energies, 2015, 8, (12), pp. 1368813709.
    17. 17)
      • 17. Mortensen, R.E., Haggerty, K.P.: ‘A stochastic computer model for heating and cooling loads’, IEEE Trans. Power Sys., 1988, 3, (3), pp. 12131219.
    18. 18)
      • 18. Du, Y., Jiang, L., Li, Y., et al: ‘A robust optimization approach for demand side scheduling under energy consumption uncertainty of manually operated appliances’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 743755.
    19. 19)
      • 19. Reddy, S., Panwar, L., Panigrahi, B.K., et al: ‘Investigating the impact of load profile attributes on demand response exchange’, IEEE Trans. Ind. Inf., 2018, 4, (14), pp. 13821391.
    20. 20)
      • 20. Safdarian, A., Fotuhi-Firuzabad, M., Lehtonen, M.: ‘Impacts of time-varying electricity rates on forward contract scheduling of DisCos’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 733741.
    21. 21)
      • 21. Yang, S., Zeng, D., Ding, H., et al: ‘Multi-objective demand response model considering the probabilistic characteristic of price elastic load’, Energies, 2016, 9, (2), pp. 8093.
    22. 22)
      • 22. Wang, Q., Wang, J., Guan, Y.: ‘Stochastic unit commitment with uncertain demand response’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 562563.
    23. 23)
      • 23. Zhao, C., Wang, J., Watson, J.P., et al: ‘Multi-stage robust unit commitment considering wind and demand response uncertainties’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 27082717.
    24. 24)
      • 24. Wang, S., Pedrycz, W.: ‘Robust granular optimization: a structured approach for optimization under integrated uncertainty’, IEEE Trans. Fuzzy Syst., 2015, 23, (5), pp. 13721386.
    25. 25)
      • 25. Contini, B.: ‘A stochastic approach to goal programming’, Oper. Res., 1968, 16, (3), pp. 576586.
    26. 26)
      • 26. Lin, W., Wen, J., Cheng, S., et al: ‘An investigation on the active power variations of wind farms’. Proc. Industry Applications Society Meeting, Orlando, FL, USA, 2011, vol. 48, pp. 18.
    27. 27)
      • 27. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: ‘MATPOWER's extensible optimal power flow architecture’. Proc. IEEE Power Engineering Society (PES) General Meeting, Seattle, WA, USA, 2009, vol. 1, pp. 17.
    28. 28)
      • 28. Wind generation and total load in the BPA balancing authority, Bonneville Power Administration, U. S. Available at
    29. 29)
      • 29. Kazarlis, S.A., Bakirtzis, A.G., Petridis, V.: ‘A genetic algorithm solution to the unit commitment problem’, IEEE Trans. Power Syst., 1996, 11, (1), pp. 8392.
    30. 30)
      • 30. Chen, X., Sun, K., Cao, Y., et al: ‘Identification of vulnerable lines in power grid based on complex network theory’. Proc. IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 2007, pp. 16.

Related content

This is a required field
Please enter a valid email address