Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Parameters estimation of single- and multiple-diode photovoltaic model using whale optimisation algorithm

The high level of penetration of photovoltaic (PV) systems into electric power grids increases rapidly due to many merits of such promising technology. In the simulation investigation of PV systems, an accurate PV model is vital, where it plays an important role through the dynamic analysis of these systems. The mathematical model of the PV module is a nonlinear IV characteristic including many unknown parameters as data provided by the PV manufacturers' are inadequate. This paper introduces a novel application of the whale optimisation algorithm (WOA) for estimating the parameters of the single, double, and three diode PV models of a PV module. The WOA-based PV models are validated by the simulation results, which are carried out under various environmental conditions using MATLAB program. The effectiveness of the WOA-based PV models is checked by comparing their results with that obtained using other optimisation methods. To obtain a realistic study, these simulation outcomes are compared with the experimental outcomes of a Kyocera KC200GT PV module. The WOA-based PV model is efficiently evaluated by comparing the absolute current error of this model with that obtained using other PV models. Using this meta-heuristic algorithm application, an accurate PV model can be obtained.

References

    1. 1)
      • 10. Moshksar, E., Ghanbari, T.: ‘Adaptive estimation approach for parameter identification of photovoltaic modules’, IEEE J. Photovolt., 2017, 7, (2), pp. 614623.
    2. 2)
      • 27. Aote, S.S., Raghuwanshi, M.M., Malik, L., et al: ‘A brief review on particle swarm optimization: limitations & future directions’, Int. J. Comput. Sci. Eng., 2013, 2, (5), pp. 196200.
    3. 3)
      • 25. Beg, A.H., Islam, Md.Z.: ‘Advantages and limitations of genetic algorithms for clustering records’. IEEE 11th Conf. Industrial Electronics and Applications (ICIEA), Hefei, China, June 2016.
    4. 4)
      • 37. Sera, D., Teodorescu, R., Rodriguez, P.: ‘PV panel model based on datasheet values’. Proc. IEEE Int. Symp. Industrial Electronics, Vigo, Spain, 2007, pp. 23922396.
    5. 5)
      • 39. Humpback whales make bubble nets with beauty and precision by EarthSky in EARTH, 27 June 2011. Available at: http://earthsky.org/earth/humpback-whales-make-bubble-nets-with-beauty-and-precision.
    6. 6)
      • 16. Lun, S.-X., Wang, S., Yang, G., et al: ‘A new explicit double-diode modeling method based on Lambert W-function for photovoltaic arrays’, Sol. Energy, 2015, 116, pp. 6982.
    7. 7)
      • 7. Rahman, S.A., Varma, R.K., Vanderheide, T.: ‘Generalised model of a photovoltaic panel’, IET Renew. Power Gener., 2014, 8, (3), pp. 217229.
    8. 8)
      • 4. Hasanien, H.M: ‘Shuffled frog leaping algorithm for photovoltaic model identification’, IEEE Trans. Sustain. Energy, 2015, 6, (2), pp. 509515.
    9. 9)
      • 15. Hejri, M., Mokhtari, H., Azizian, M.R., et al: ‘On the parameter extraction of a five-parameter double-diode model of photovoltaic cells and modules’, IEEE J. Photovolt., 2014, 4, (3), pp. 915923.
    10. 10)
      • 38. Goldbogen, J.A., Friedlaender, A.S., Calambokidis, J., et al: ‘Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology’, Bioscience, 2013, 63, pp. 90100.
    11. 11)
      • 21. Askarzadeh, A., Rezazadeh, A.: ‘Artificial bee swarm optimization algorithm for parameters identification of solar cell models’, Appl. Energy, 2013, 102, pp. 943949.
    12. 12)
      • 17. Zagrouba, M., Sellami, A., Bouaïcha, M., et al: ‘Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction’, Sol. Energy, 2010, 84, pp. 860866.
    13. 13)
      • 35. Nishioka, K., Sakitani, N., Uraoka, Y., et al: ‘Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration’, Sol. Energy Mater. Sol. Cells, 2007, 91, (13), pp. 12221227.
    14. 14)
      • 24. Askarzadeh, A, Rezazadeh, A.: ‘Parameter identification for solar cell models using harmony search-based algorithms’, Sol. Energy, 2012, 86, (11), pp. 32413249.
    15. 15)
      • 40. Villalva, M.G., Gazoli, J.R., Filho, E.R: ‘Comprehensive approach to modeling and simulation of photovoltaic array’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 11981208.
    16. 16)
      • 8. Chin, V.J., Salam, Z., Ishaque, K.: ‘An accurate and fast computational algorithm for the two-diode model of PV module based on a hybrid method’, IEEE Trans. Ind. Electron., 2017, 64, (8), pp. 62126222.
    17. 17)
      • 11. Khezzar, R., Zereg, M., Khezzar, A.: ‘Modeling improvement of the four parameter model for photovoltaic modules’, Sol. Energy, 2014, 110, pp. 452462.
    18. 18)
      • 30. Hasanien, H.M.: ‘Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm’, Electr. Power Syst. Res., 2018, 157, pp. 168176.
    19. 19)
      • 42. Jacob, B., Balasubramanian, K., Sudhakar Babu, T., et al: ‘Solar PV modelling and parameter extraction using artificial immune system a School of Electrical Engineering’, Energy Procedia, 2015, 75, pp. 331336.
    20. 20)
      • 41. Dizqah, A.M., Krishna, A.M., Busawon, K.: ‘An accurate method for the PV model identification based on a genetic algorithm and the interior point method’, Renew. Energy, 2014, 72, pp. 212222.
    21. 21)
      • 19. Wei, H., Cong, J., Lingyun, X., et al: ‘extracting solar cell model parameters based on chaos particle swarm algorithm’. Int. Conf. Electric Information and Control Engineering (ICEICE), Wuhan, China, 2011, pp. 398402.
    22. 22)
      • 23. Rajasekar, N., Kumar, N.K., Venugopalan, R.: ‘Bacterial foraging algorithm based solar PV parameter estimation’, Sol. Energy, 2013, 97, pp. 255265.
    23. 23)
      • 9. Sandrolini, L., Artioli, M., Reggiani, U.: ‘Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis’, Appl. Energy, 2010, 87, (2), pp. 442451.
    24. 24)
      • 29. Watkins, W.A., Schevill, W.E.: ‘Aerial observation of feeding behavior in four baleen whales: Eubalaenaglacialis, Balaenoptera borealis, Megapteranovaean- gliae, and Balaenopteraphysalus’, J. Mammal., 1979, 60, (1), pp. 155163.
    25. 25)
      • 34. Khanna, V., Das, B.K., Bisht, D., et al: ‘A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm’, Renew. Energy, 2015, 78, pp. 105113.
    26. 26)
      • 20. Sandrolini, L., Artioli, M., Reggiani, U.: ‘numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis’, Appl. Energy, 2010, 87, pp. 442451.
    27. 27)
      • 36. De Soto, W., Klein, S., Beckman, W.: ‘Improvement and validation of a model for photovoltaic array performance’, Sol. Energy, 2006, 80, (1), pp. 7888.
    28. 28)
      • 13. Ishaque, K., Salam, Z., Taheri, H.: ‘Simple, fast and accurate two-diode model for photovoltaic modules’, Sol. Energy Mater. Sol. Cells, 2011, 95, (2), pp. 586594.
    29. 29)
      • 32. Ishaque, K., Salam, Z., Mekhilef, S., et al: ‘Parameter extraction of solar photovoltaic modules using penalty-based differential evolution’, Appl. Energy, 2012, 99, pp. 297308.
    30. 30)
      • 43. Walker, G.: ‘Evaluating MPPT converter topologies using a MATLAB PV model’, J. Electr. Electron. Eng., 2001, 21, (1), pp. 4555.
    31. 31)
      • 22. Alam, D., Yousri, D., Eteiba, M.: ‘Flower pollination algorithm based solar PV parameter estimation’, Energy Convers. Manage., 2015, 101, pp. 410422.
    32. 32)
      • 18. Asif, S.: ‘Solar cell modeling and parameter optimization using simulated annealing’, J. Propul. Power, 2008, 24, pp. 10181022.
    33. 33)
      • 5. Elazab, O.S., Hasanien, H.M., Elgendy, M.A., et al: ‘Whale optimisation algorithm for photovoltaic model identification’, J. Eng., 2017, 2017, (13), pp. 19061911.
    34. 34)
      • 31. Hasanien, H.M: ‘Whale optimisation algorithm for automatic generation control of interconnected modern power systems including renewable energy sources’, IET Gener. Transm. Distrib., 2018, 12, (3), pp. 607614.
    35. 35)
      • 6. AlHajri, M.F., El-Naggar, K.M., AlRashidi, M.R., et al: ‘Optimal extraction of solar cell parameters using pattern search’, Renew. Energy, 2012, 44, pp. 238245.
    36. 36)
      • 26. Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., et al: ‘Particle swarm optimization: basic concepts, variants and applications in power systems’, IEEE Trans. Evol. Comput., 2008, 12, (2), pp. 171195.
    37. 37)
      • 12. Babu, B.C., Gurjar, S.: ‘A novel simplified two-diode model of photovoltaic (PV) module’, IEEE J. Photovolt., 2014, 4, (4), pp. 11561161.
    38. 38)
      • 28. Seyedali, M., Andrew, L.: ‘The Whale optimization algorithm’, Adv. Eng. Softw., 2016, 95, pp. 5167.
    39. 39)
      • 3. Hasanien, H.M., Muyeen, S.M., Al-Durra, A.: ‘Gravitational search algorithm-based photovoltaic array reconfiguration for partial shading losses reduction’. Proc. IET Renewable Power Generation Conf. (RPG 2016), London, U.K., 21–23 September 2016, pp. 16.
    40. 40)
      • 2. Jäger-Waldau, A.: ‘PV status report 2016’ (Publications Office of the European Union, Luxembourg City, Luxembourg, 2016), ISBN 978-92-79-63055-2.
    41. 41)
      • 14. Gow, J.A., Manning, C.D: ‘Development of a photovoltaic array model for use in power-electronics simulation studies’, IEE Proc. Electr. Power Appl., 1999, 146, (2), pp. 193200.
    42. 42)
      • 1. Meekki, H., Mellit, A., Sall, H., et al: ‘Modeling and simulation of photovoltaic panel based on artificial neural networks and VHDL-language’. 4th Int. Conf. Computer Integrated Manufacturing CIP, Algerie, 2007.
    43. 43)
      • 33. Hasanien, H.M: ‘An adaptive control strategy for low voltage ride through capability enhancement of grid-connected photovoltaic power plants’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 32303237.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5317
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5317
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address