access icon free Axial-flux permanent-magnet synchronous generator with coreless armature and non-integral coil–pole ratio

This article presents a study on an axial-flux permanent-magnet synchronous generator (AFPMSG) with a double-sided rotor, coreless armature. The armature winding consists of non-overlapping concentrated coils and has a non-integral coil–pole ratio. It is shown that, with an appropriate choice of armature coil number to pole number, the fundamental winding factor of the AFPMSG can be made close to that of a full-pitched integral slot winding. The field distribution and load performance are computed for a prototype machine based on a two-dimensional, time-stepping finite element method. A study of the armature reaction effect of the coreless armature winding and the origin of torque ripple is also carried out. The computed voltage and current waveforms, as well as the load characteristics, are verified by practical experiments.

Inspec keywords: permanent magnet generators; machine windings; coils; magnetic flux; synchronous generators; finite element analysis

Other keywords: nonintegral coil-pole ratio; field distribution; coreless armature winding; load performance; computed current waveform; double-sided rotor; fundamental winding factor; load characteristics; time-stepping finite element method; AFPMSG; computed voltage waveform; axial-flux permanent-magnet synchronous generator; two-dimensional finite element method; armature coil number; armature reaction effect; nonoverlapping concentrated coils; torque ripple; pole number; full-pitched integral slot winding

Subjects: Synchronous machines; Finite element analysis; Inductors and transformers

References

    1. 1)
      • 14. Azzouzi, J., Barakat, G., Dakyo, B.: ‘Quasi-3-D analytical modeling of the magnetic field of an axial flux permanent-magnet synchronous machine’, IEEE Trans. Energy Convers., 2005, 20, (4), pp. 746752.
    2. 2)
      • 26. Kamper, M.J., Wang, R.-J., Rossouw, F.G.: ‘Analysis and performance of axial flux permanent-magnet machine with air-cored nonoverlapping concentrated stator windings’, IEEE Trans. Ind. Appl., 2008, 44, (5), pp. 14951504.
    3. 3)
      • 21. Fei, W., Luk, P.C.-K., Jinupun, K.: ‘Design and analysis of high-speed coreless axial flux permanent magnet generator with circular magnets and coils’, IET Electr. Power Appl., 2010, 4, (9), pp. 739747.
    4. 4)
      • 19. Wang, R.-J., Kamper, M.J.: ‘Calculation of eddy current loss in axial field permanent-magnet machine with coreless stator’, IEEE Trans. Energy Convers., 2004, 19, (3), pp. 532538.
    5. 5)
      • 27. Chan, T.F., Lai, L.L., Xie, S.: ‘Field computation for an axial flux permanent-magnet synchronous generator’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 111.
    6. 6)
      • 5. Global Wind Energy Council, ‘Global wind report 2016 – annual market update’. Available at http://gwec.net/publications/global-wind-report-2/global-wind-report-2016/, accessed May 2018.
    7. 7)
      • 4. Global Wind Energy Council, ‘Annual market update 2015’. Available at http://www.gwec.net, accessed May 2018.
    8. 8)
      • 28. Zou, T., Li, D., Qu, R., et al: ‘Analysis of a dual-rotor, toroidal-winding, axial-flux vernier permanent magnet machine’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 19201930.
    9. 9)
      • 32. Gieras, J.F., Wang, R.-J., Kamper, M.J.: ‘Axial flux permanent magnet brushless machines’ (Springer, The Netherlands, 2004, 2nd edn. 2008).
    10. 10)
      • 20. Javadi, S., Mirsalim, M.: ‘Design and analysis of 42-V coreless axial-flux permanent-magnet generators for automotive applications’, IEEE Trans. Magn., 2010, 46, (4), pp. 10151023.
    11. 11)
      • 35. Ishikawa, T., Amada, S., Segawa, K., et al: ‘Proposal of a radial- and axial-flux permanent-magnet synchronous generator’, IEEE Trans. Magn., 2017, 53, (6), pp. 14.
    12. 12)
      • 2. Xu, G., Xu, L., Morrow, J.: ‘Power oscillation damping using wind turbines with energy storage systems’, IET Renew. Power Gener., 2013, 7, (5), pp. 449457.
    13. 13)
      • 6. Global Wind Energy Council, ‘Global wind energy outlook 2016’, Available at http://www.gwec.net, accessed May 2018.
    14. 14)
      • 11. Wanjiku, J., Khan, M., Barendse, P.S., et al: ‘Influence of slot openings and tooth profile on cogging torque in axial-flux PM machines’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 75787589.
    15. 15)
      • 10. Lombard, N., Kamper, M.: ‘Analysis and performance of an ironless stator axial flux PM machine’, IEEE Trans. Energy Convers., 1999, 14, (4), pp. 10511056.
    16. 16)
      • 37. Bozhko, S., Rashed, M., Hill, C.I., et al: ‘Flux-weakening control of electric starter-generator based on permanent-magnet machine’, IEEE Trans. Transp. Electrif, 2017, 3, (4), pp. 864877.
    17. 17)
      • 17. Polikarpova, M., Ponomarev, P., Lindh, P., et al: ‘Hybrid cooling method of axial-flux permanent-magnet machines for vehicle applications’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 73827390.
    18. 18)
      • 18. Caricchi, F., Crescimbini, F., Honorati, O., et al: ‘Performance of coreless-winding axial-flux permanent-magnet generator with power output at 400 Hz, 3000 r/min’, IEEE Trans. Ind. Appl., 1998, 34, (6), pp. 12631269.
    19. 19)
      • 1. Wang, D., Gao, X., Meng, K., et al: ‘Utilisation of kinetic energy from wind turbine for grid connections: a review paper’, IET Renew. Power Gener., 2018, 12, (6), pp. 615624.
    20. 20)
      • 13. Polinder, H., Van der Pijl, F.F.A., De Vilder, G.-J., et al: ‘Comparison of direct-drive and geared generator concepts for wind turbines’, IEEE Trans. Energy Convers.,, 2006, 21, (3), pp. 725733.
    21. 21)
      • 38. Miao, D.-M., Shen, J.-X.: ‘Simulation and analysis of a variable speed permanent magnet synchronous generator with flux weakening control’. 2012 Int. Conf. Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, November 2012, pp. 16.
    22. 22)
      • 24. Vansompel, H., Sergeant, P., Dupré, L., et al: ‘Axial-flux PM machines with variable air gap’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 730737.
    23. 23)
      • 25. Bumby, J.R., Martin, R., Mueller, M., et al: ‘Electromagnetic design of axial-flux permanent magnet machines’, IEE Proc. Electr. Power Appl., 2004, 151, (2), pp. 151160.
    24. 24)
      • 9. Chalmers, B., Spooner, E.: ‘An axial-flux permanent-magnet generator for a gearless wind energy system’, IEEE Trans. Energy Convers., 1999, 14, (2), pp. 251257.
    25. 25)
      • 3. Huang, C.-M., Chen, S.-J, Yang, S.-P., et al: ‘Capacity optimisation for an SAMS considering LCOE and reliability objectives’, IET Renew. Power Gener., 2018, 12, (7), pp. 787796.
    26. 26)
      • 36. Milivojevic, N., Schofield, N., Stamenkovic, I., et al: ‘Field weakening control of PM generator used for small wind turbine application’. IET Conf. Renewable Power Generation (RPG 2011), Edinburgh, UK, September 2011, pp. 18.
    27. 27)
      • 15. Brisset, S., Vizireanu, D., Brochet, P.: ‘Design and optimization of a nine-phase axial-flux PM synchronous generator with concentrated winding for direct-drive wind turbine’, IEEE Trans. Ind. Appl., 2008, 44, (3), pp. 707715.
    28. 28)
      • 23. Ni, R., Wang, G., Gui, X., et al: ‘Investigation of d-and q-axis inductances influenced by slot-pole combinations based on axial flux permanent-magnet machines’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 45394551.
    29. 29)
      • 34. Daghigh, A., Javadi, H., Torkaman, H.: ‘Design optimization of direct-coupled ironless axial flux permanent magnet synchronous wind generator with low cost and high annual energy yield’, IEEE Trans. Magn., 2016, 52, (9), pp. 111.
    30. 30)
      • 16. Xia, B., Shen, J.-X., Luk, P.C.-K., et al: ‘Comparative study of air-cored axial-flux permanent-magnet machines with different stator winding configurations’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 846856.
    31. 31)
      • 31. Chan, T.F., Wang, W., Lai, L.L.: ‘Magnetic field in a transverse- and axial-flux permanent magnet synchronous generator from 3-D FEA’, IEEE Trans. Magn., 2012, 48, (2), pp. 10551058.
    32. 32)
      • 33. Ravaud, R., Lemarquand, G., Lemarquand, V.: ‘Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: axial magnetization’, IEEE Trans. Magn., 2009, 45, (7), pp. 29963002.
    33. 33)
      • 29. Chan, T.F., Wang, W., Lai, L.L.: ‘Performance of an axial-flux permanent magnet synchronous generator from 3-D finite-element analysis’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 669676.
    34. 34)
      • 12. Bumby, J., Martin, R.: ‘Axial-flux permanent-magnet air-cored generator for small-scale wind turbines’, IEE Proc. Electr. Power Appl., 2005, 152, (5), pp. 10651075.
    35. 35)
      • 8. Muljadi, E.C., Butterfield, P., Wan, Y.-H.: ‘Axial-flux modular permanent-magnet generator with a toroidal winding for wind-turbine applications’, IEEE Trans. Ind. Appl., 1999, 35, (4), pp. 831836.
    36. 36)
      • 22. Zhang, B., Seidler, T., Dierken, R., et al: ‘Development of a yokeless and segmented armature axial flux machine’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 20622071.
    37. 37)
      • 7. Wikipedia, ‘Wind power in Denmark’, Available at https://en.wikipedia.org/wiki/Wind_power_in_Denmark, accessed May 2018.
    38. 38)
      • 30. Chan, T.F., Lai, L.L.: ‘An axial-flux permanent-magnet synchronous generator for a direct-coupled wind-turbine system’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 8694.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5311
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5311
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading